
St.	Petersburg	
2017	

	
Ministry	of	Education	and	Science	of	the	Russian	Federation	
Peter	the	Great	St.	Petersburg	State	Polytechnic	University	

Institute	of	Computer	Sciences	and	Technologies	
Graduate	School	of	Cyber-Physical	Systems	and	Control	

	
	
	
	
	

Practice	Task	–	Ch	6	
Genetic	Algorithm	

Discipline:	Intellectual	Computing	
3	April	2017	

	
	
	
	
	
	
	

	
Student	Group:	13541/8	

	
Christopher	W.	Blake	

	

Professor	
	

Kuchmin	A.Y	
	
	
	
	

	 	

Practice	Task:	Ch	6	–	Genetic	Algorithm		 	 Christopher	W.	Blake	
Intellectual	Computing	 	 April	3,	2017	

Page	2	of	4	

Contents	
Introduction	..	3	

Background	...	3	

Chromosomes	and	Genes	...	3	

Fitness	Function	..	3	

Crossover	...	4	

Mutation	...	4	

Results	...	4	

Conclusion	...	4	

	
	
	 	

Practice	Task:	Ch	6	–	Genetic	Algorithm		 	 Christopher	W.	Blake	
Intellectual	Computing	 	 April	3,	2017	

Page	3	of	4	

Introduction	
Chapter	6	of	“AI	Application	Programming”	by	M.	Tim	Jones	is	about	the	genetic	algorithm,	
which	 is	used	 for	optimization.	 In	 this	 case	 the	usage	of	basic	 stack	operations	 (duplicate,	
swap,	multiply,	add,	over),	to	mimic	a	mathematical	equation.	The	equation	to	is	described	by	
a	chromosome	and	various	genes	(the	stack	operations).	Each	gene	represents	one	operation	
in	the	stack	and	can	be	replaced	by	other	gene	possibility	(operation).	By	swapping	the	genes,	
different	configurations	of	the	stack	are	created.	
	
The	 genetic	 algorithm	occurs	by	 introducing	 a	 fitness	 function	and	 forms	of	 chromosomal	
manipulation.	The	fitness	function	is	used	to	judge	how	well	the	new	object	(and	its	genes)	
fulfills	a	desired	task.	Those	with	higher	results	have	higher	possibilities	of	reproduction	and	
continue	their	genes.	Two	forms	of	chromosomal	manipulation	are	utilized	in	this	program:	
crossover	 and	 mutation.	 Through	 these	
manipulations	 over	 cycles	 of	 new	
generations,	an	optimized	solution	becomes	
present	in	the	population.	
	
A	 sample	 C#	 program	 has	 been	 created	 to	
show	 this	 methodology	 and	 genetic	
development.	The		program	allows	the	user	to	
specify	 the	 initial	 population,	 crossover	
probability,	 mutation	 possibility,	 and	 max	
number	 of	 generation	 cycles.	 After	 the	
simulation	is	run,	the	maximum	and	average	
fitness	vs	generation	cycle	are	displayed.		

Background	
Chromosomes	and	Genes	
Each	 chromosome	with	genes	 in	 the	genetic	 algorithm	 is	 actually	 a	 stack	of	operations	 to	
perform	on	another	stack	of	numbers.	For	example,	the	below	chromosome	includes	6	genes	
(the	below	stack	includes	6	operations)	to	represent	the	equation	a^2	+	b^2	on	a	number	stack	
of	[a,	b].	
	
Chromosome	=	[duplicate,	multiply,	swap,	duplicate,	multiply,	add]	(a^2	+	b^2)	
	
Fitness	Function	
A	fitness	function	is	used	to	judge	how	well	the	solution	fulfills	the	task.	In	the	above	example,	
the	fitness	would	be	the	highest	because	it	properly	mimics	the	equation.	However,	adding	
additional	fitness	steps	allows	the	better	approximations	to	remain	within	the	population.	For	
example,	the	fitness	value	is	increased	according	to	the	below	rules	for	this	program.	
	
If	no	error:	 	 	 	 	 +100	points	
If	numeric	stack	ends	with	1	number:	 +200	points	
If	numeric	stack	ends	with	+1	numbers:	 -10	points	per	additional	number	
If	numeric	stack	is	correct	value:	 	 +500	points	
	

Figure	1:	C#	Sample	Program	

Practice	Task:	Ch	6	–	Genetic	Algorithm		 	 Christopher	W.	Blake	
Intellectual	Computing	 	 April	3,	2017	

Page	4	of	4	

Crossover	
Crossover	is	the	mixing	of	two	chromosomes	to	create	two	new	
chromosomes.	A	crossover	point	is	selected,	and	the	genes	are	
copied	from	each	parent,	creating	two	new	children.	See	figure	
2.	In	the	program,	the	crossover	factor	controls	the	probability	
of	chosen	parents	producing	children	via	crossover.	The	actual	
crossover	point	is	random.	
	
Mutation
Mutation is the random changing of one or more genes within the
chromosome. See figure 3. In the program the mutation factor
controls the probability of a produced child of having a mutation.
The gene selected for mutation is random.

Results	
	The	initial	population	is	important	on	the	calculation	requirements	and	
number	of	generations	cycles	until	a	solution	is	found.	As	such	a	few	plots	
have	been	produced	to	show	the	effect	of	changing	population.	
	
The	charts	to	the	right	show	that	the	
initial	 population	 significantly	
affects	 the	 averate	 fitness	 level.	 As	
less	 initial	 population	 is	 used	 the	
presence	 of	 the	 randomization	
function	becomes	apparent.	With	low	
populations,	such	as	10	and	20,	there	
is	 little	 or	 no	 obvious	 fitness	
improvement.	However,	with	 a	 large	
population,	 the	 fitness	 clearly	
increases	with	each	generation.	
	
However,	 it	 should	 be	 noted,	 using	
large	 populations	 is	 calculation	
intensive.	As	such	a	middle	value	such	
as	100	is	likely	sufficient.	
	
Conclusion	
A	 genetic	 evolution	 approach	 has	
been	 applied	 to	 generating	 stack	
operations	 that	 estimate	 a	
mathematical	 equation.	 Afterwards,	
the	 effect	 of	 initial	 population	 was	
investigated	 on	 fitness	 results	 vs	
generation.	It	is	shown	that	a	medium	
value	such	as	100	is	sufficient	to	show	
improvement	as	well	as	avoid	higher	
computation	requirements.	

500	

	

50	

	
400	

	

40	

	
300	

	

30	

	
200	

	

20	

	
100	

	

10	

	

Table	1:	Fitness	vs	Generation	Cycle	for	different	population	sizes	

Figure	2:	Genetic	Crossover	

Figure	3:	Genetic	Mutation	

