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Abstract

An adaptive stream-based process is described for learning a set of vocabulary to
control a black box. The method serves to accurately discretize the value space,
enable tracking, and identify simple patterns. These values and patterns become
the system knowledge (or vocabulary) and are used for training a reinforcement
learning based decision tree. An interpretation layer enables developing higher-
level knowledge with time, creating an easy-to-read policy of the black box func-
tionality, providing control information. Tests are performed to demonstrate the
effectiveness and limitations with open-loop systems. Finally, a proposal is made
for further knowledge identification, closed-loop systems, and learning with less
prior information.

Keywords: black box, knowledge extraction, control, machine learning, decision
tree
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Chapter 1

Introduction

In this work, a dynamic an adaptive method for controlling a black box is de-
scribed. The work begins with an overview of the history, specifies the objective,
and mentions possible applications and limitations. It then introduces related
work and existing processes (Chap. 2). Next the problem definition (Chap. 3) de-
fines the important models and nomenclature, which enable the learning process
(Chap. 4), and clarifies the control method, inner processes, and their roles. Af-
terwards, a set of experiments are presented which test the functionality of each
inner process as well as the overall control method (Sec. 6 & 7). Finally, this work
concludes with a summary of the results, important limitations, and recommen-
dations for further work (Chap. 9).

1.1 Problem Statement

Systems and products are developed on a daily basis, all of which require a con-
trol process. The development of such a control process often requires exten-
sive analysis and requires domain-specific knowledge. An automatic or semi-
automatic process for developing control systems would enable faster-to-market
and more capable products.
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1.2. OBJECTIVE

1.2 Objective

This work plans to describe a process that emulates a system of learning to pro-
duce knowledge about a black box device. Through the processes described in
chapter 3 it is possible to identify the unique pieces of knowledge, or vocabulary,
and primitive functions of a black box device or previously uncertain system. As
such it has the following objectives.

• Identification of the unique data experienced by a black box.

• Identification of the repeating structures within the unique data.

• Identification and modeling of the primitive functions of a black box, provid-
ing the primitive control mechanisms.

1.3 History and Overview

In all systems of life, there is a common theme: the need to experiment, collect,
associate, and control. Through this ongoing and repeating process, new capa-
bilities are discovered at the frontier of current knowledge, leading to higher level
knowledge. A formal definition of “knowledge” would be “acquaintance with facts,
truths, or principles, as from study or investigation.” In the scope of this work,
“knowledge” will be referred to as the relationships learned in and between input
signals and output responses of a black box.
At any time, the recorded input signals and output responses from a black box
can be examined to infer knowledge about the inner mechanism. This is however
within a limit; one can only describe new knowledge within the vocabulary of exist-
ing knowledge (lower-level knowledge). As such, these new descriptions can be
considered as new knowledge at a slightly higher level. Naturally, this higher-level
knowledge then acts as more vocabulary to enabled higher level experimentation.
This process usually repeats until sufficient knowledge of the black box is known,
and a specified threshold of productivity has been reached.

2



1.4. APPLICATIONS

1.4 Applications

Below are three example usage scenarios for such a black box identification pro-
cess. However, only the first will be explored during the development of this work.

1. Control System Development – A controller can automatically be deter-
mined by exploring the full range of outputs, and associating them with the
inputs that cause them. Examples include simple processes such as the
logic operators "And", "Or", and "Xor", which are usually easy to solve or
very complex devices such as robotic arms, which need high-level mathe-
matical and engineering knowledge.

2. Repetitive Task Identification - A controller can monitor a manually con-
trolled system and learn the repeated actions, converting them into memo-
rized tasks. These tasks could be presented to the user, labeled, and allow
simplified operation.

3. Complex Scenarios – Virtual or real sensors could be placed in an envi-
ronment and relationships between the sensors identified, producing vocab-
ulary to describe some goal. Such an example could be the unemployment
rate, where virtual sensors are defined to monitor several thousand daily
parameters.

1.5 Scope and Limitations

1. Closed loop system - In the robotic arm example, the positions of the arms
are determinable, but the path between positions are not. The current pro-
cess does not provide feedback from the outputs into the controller inputs.
Hence, such a dynamic system cannot yet be learned.

2. Response time - All real systems have a time delay. The current procedure
only detects bigram relationships, potentially creating confusion or false re-
lationships with time.

3. Gaussian noise distribution - A unique data point per input or output is
assumed to have noise with a gaussian distribution. Data points with non-
gaussian noise characteristics cannot be identified.

3



Chapter 2

Related Work

Machine learning approaches have become very popular for solving classification
and regression problems. This is especially true in highly nonlinear control prob-
lems where traditional, usually analytical, approaches are very difficult or may
simply never be possible. The topic of this work is also directly related to the field
of iterative learning control (ILC) and indirectly to the idea of language learning.
The field of iterative learning control is very broad and traditional feedback con-
trol, optimal control, adaptive control, robust control, and intelligent control [3].
The methods attempt to optimize a task by repeating that task several times, usu-
ally in batches or trials. A typical problem definition composes four components:
inputs, outputs, disturbances, and measurement noise [5]. The common control
objective is usually to follow some pre-defined reference path. As such there are
many algorithms and approaches in in ILC. However, even though there are sup-
posed intelligent methods, this term can be misleading in the current state of the
art. The basic goal of ILC is essentially to optimize accuracy of a single task,
accounting for expected disturbances. By repeating the same task several times
and comparing it to the reference path, an error is computed and used to train
the algorithm. This training is limited to a specified control parameter designated
by the designer. Finally, it is important to note that there are different levels of
"learning" [3] and learning in ILC is always at the lowest level of the pre-specified
parameter.
To generalize and remove this restriction, the area of intelligent algorithms has
been significantly developed. In recent years, machine learning methods involv-
ing neural networks and genetic algorithms have been employed to try to identify
existing dynamic systems and effectively model them as a combination of tradi-
tional feedback control approaches, similar to a regression task. However, again
these systems usually require prior knowledge about the controlled system, such
as degrees of freedom or control parameters.

4



Essentially, the optimization task has shifted from learning on only one parameter
to learning on several parameters. Like earlier systems, many of these also have
little or no generalization capabilities beyond the designated task and initial train-
ing period. In fact, they also introduce a new problem, that of making decisions
with partial information.
The most similar known work uses neural networks to train a controller, again
with some (less) prior knowledge. A plant (black box) is emulated using a neural
network, similar to plant identification in control theory. Afterwards the controller
is trained on this emulated system. An emulated plant is required because the
controller needs several passes, which is impractical with the real system. The
number of layers in the neural network of the emulated plant are determined by
the degrees of freedom of the plant. As the controller attempts to control the
emulated plant, it also performs a backpropagation through the emulated plant,
providing the error information. As such, through many passes, the weights of the
controller’s neural network converge, minimizing an error function. Although the
controller automatically learns to control the emulated plant, it does so with help
of the emulated plant, which contains significant prior knowledge provided by the
designer. [4]
Finally, although not directly related to control is language learning, discussed by
Kirby. He theorizes that the origin of language is an inevitable outcome of the
system dynamics. He claims that humans have a set of shared learning biases,
and based on these biases, human makes similar assumptions when attempting
to deconstruct and identify the components of another’s message. Essentially,
language develops by identifying shared coincidences amongst the communica-
tions of the people. It begins as simple vocabulary with limited expressiveness
and coordination and then later develops to be fully covering. [2]
To overcome the problem of prior knowledge and partial information, this work
describes a system where unique pieces of knowledge (vocabulary) are identi-
fied in the data streams of the inputs and outputs of the black box. Rather than
computing the error between the predicted output with an actual output, associa-
tions are created using a reinforcement learning approach. This enables multiple
relationships between input vocabulary and output vocabulary, similar to the dis-
cussed language learning. Additionally, by introducing vocabulary, a degree of
abstraction is also possible, creating symbolism for combinations of the original
input and output streams.

5



Chapter 3

Problem Definition

3.1 Black Box Model

A black box can be simply modeled as two data spaces and a set of functions,
including an influence of time. The first data space, representing the options for
influencing the black box, is defined as all the possible inputs X 2 I

d, where d is
the number of input parameters. Similarly, the second data space, representing
the possible responses from the black box, is defined as all the possible outputs
Y 2 O

k, where k is the number of output sources.
Within the black box, there is a set of unknown functions F 2 Z

l, where l is the
unknown quantity of functions. Each function f 2 F uses the current input ~x and
any internal memory of the black box to cause direct changes to one or more
parameters in the output ~y. It is important to note that each function effectively
processes in parallel. Hence, the changes to ~y occur with different timings. Fi-
nally, an extension of this model is also possible, where the scope of the black
box can change, meaning the number of input parameters d or output sources k

may increase or decrease.

Black Box

Function Space
! = #$ % , #' % ,… #) (%)

(with internal memory)

Output Space
, ∈ ./

Input Space
% ∈ 01

Figure 3.1: Black Box Model
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3.2. DISCRETIZATION MODEL

3.2 Discretization Model

As mentioned in section 3.1, a black box has connections for several input and
output streams, X and Y respectively. Each of these streams has an associated
continuous value space v 2 V. Because the value space V is continuous, it is
represented as a set of ranges r 2 R. Each range r is defined by a lower limit
Low and upper limit High and contains statistics to continuously track the the
count N (3.1), sum Sum (3.2), square sum SqSum (3.3), average µ (3.4) and
standard deviation � (3.5) of the previously experienced values through time t.

N =
X

1t (3.1)

Sum =
X

vt (3.2)

SqSum =
X

vt
2 (3.3)

µ = Sum/N (3.4)

� = SqSum� 2Nµ+Nµ
2 (3.5)

The set of ranges may be affected by two actions, a split S or merge M. The split
action separates an existing range r into two new ranges by some intermediate
value value (See Alg. 3.1). The merge action combines two neighboring ranges,
rLow and rHigh, that share a common boundary value, producing one new larger
range (See Alg. 3.2).

Algorithm 3.1 Split range
1: //Global variable
2: R rangesList

3: procedure SPLITRANGE(r, value)
4: //Create new ranges
5: rLow  range(r.Low, value)

6: rHigh range(value, r.High)

7: //Remove old range and add new ranges
8: R.Remove(r)

9: R.Add(rLow)

10: R.Add(rHigh)

11: end procedure

7



3.3. KNOWLEDGE REPRESENTATION

Algorithm 3.2 Merge two ranges
1: //Global variable
2: R rangesList

3: procedure MERGETWORANGES(rLow, rHigh)
4: //Check shared limit
5: if (rLow.High 6= rHigh.Low) then
6: throw error: Ranges must share a limit.
7: end if
8: //Create new range
9: rMerged range(rLow.Low, rHigh.High)

10: //Remove old ranges and add new range
11: R.Remove(rLow)

12: R.Remove(rHigh)

13: R.Add(rMerged)

14: end procedure

3.3 Knowledge Representation

An instances of knowledge c 2 C is defined as a raw value observed by the black
box or a symbol representing a combination of existing knowledge instances.
Each knowledge instance should effectively represent one unique piece of infor-
mation. Two representations are used for these combinations, for simultaneity
and sequentiality.
Simultaneity occurs when two or more knowledge instances occur at the same
time. The sub-elements of the new knowledge instance are separated by a
comma, like ci = (c1, c3, c4). Sequentiality occurs when two knowledge instances
c
t and c

t+1 are separated by only one time interval. The sub-elements of the new
instance are separated by a semicolon, like ci = (c1; c2). Several examples are
shown in Table 3.1.
By definition, an instance composed of other instances is referred to as higher
level knowledge. For example, in Table 3.1, c15 is higher than c13, which is higher
than c1.
All distinguishable values (Sec. 4.1.1) within a single stream of X or Y have an
equivalent knowledge instance c. Hence, the entire value spaces of X and Y

can be translated into C. Naturally, an individual mapping can be written using
different levels of knowledge, producing different length descriptions. The details
of this mapping process are described in section 4.1.

8



3.4. PREDICTION MODEL

Table 3.1: Example instances of knowledge with descriptions

Instance Knowledge Content Description

c1 (x1 = 0.0) Input x1 has a value 0.0.

c2 (x1 = 1.0) Input x1 has a value 1.0.

c3 (x2 = 0.0) Input x2 has a value 0.0.

c4 (x2 = 1.0) Input x2 has a value 1.0.

c5 (y1 = 0.0) Output y1 has a value 0.0

c6 (y1 = 1.0) Output y1 has a value 1.0

c7 (c1, c3) x1 = 0 and x2=0 simultaneously.

c8 (c1, c4) x1 = 0 and x2=1 simultaneously.

c9 (c2, c3) x1 = 1 and x2=0 simultaneously.

c10 (c2, c4) x1 = 1 and x2=1 simultaneously.

c11 (c2, c4, c5) x1=1, x2=1, y1=0 simultaneously.

c12 (c1, c4, c5) x1=1, x2=1, y1=1 simultaneously.

c13 (c1; c2) x1 set to 1 then 0.

c14 (c2; c1) x1 set to 0 then 1.

c15 (c14; 3c2; c13)
x1 switched from 0 to 1, held for 3t
then switched to 0.

3.4 Prediction Model

A previously developed model [1] for reinforcement learning based decision trees
is modified to discover the best set of knowledge instances from a potentially
evolving stream of data. These queries are then used as the basis of a decision
tree, which is used for mapping of black box inputs to black box responses. For
consistency with common learning model nomenclature, inputs of the black box
model are described as features, responses of the black box as as labels, and a
vector of input data to the black box as an instance.
Like the black box model, the input feature space X 2 I

d is defined to be the input
space with dimensionality d, which may change at any new instance. (i.e. new
black box inputs may appear or disappear.)

9



3.4. PREDICTION MODEL

The output label space Y 2 O
k, also like the black box model, may also experi-

ence new response values (labels) at any new set of features. Clearly, there is no
prior knowledge of the feature or label space before data arrives. However, be-
cause X and Y are potentially continuous, learning occurs using the discretized
values (section 4.1.1). These discretized values are represented as knowledge
instances C 2 C (Sec. 3.3).
At every time step t = {1, 2, 3, ...}, an input ~Xt 2 X and a label ~yt 2 Y are provided
to the learner. Training then occurs by choosing between two actions, a query Fi

or a report Rj. A query action will introduce an additional feature into the policy,
and a report will predict a class label y 2 Y. The prediction is compared to the
true class label, providing a reward and ending the time step. A policy can then
be created or updated by propagating the reward from the classification labels
through the queries. This leads to a decision making process that is both highly
accurate and uses minimal information for classification. [1]
The DT induction problem is formulated as a Markov Decision Process (MDP),
again similar to [1] where transitions occur between states using actions, as de-
fined below.

• State (s) A combination of features and their respective values known at
that state.

• State Space (S) All possible states of the MDP.

• Query Action (F) An action possibility at each state, which reads an ad-
ditional feature’s value from the training input ~xt, and causes transition to
another state. Naturally, a state cannot query a feature that it already con-
tains.

• Report Action (R) An action possibility at each state, which predicts the
classification label.

• Action Space (A) All possible query and report actions.

10



3.4. PREDICTION MODEL

Diverging from the formulation of [1], the reward system for queries and reports
is modified. The reward for a report Rj is based on the percentage of an expe-
rienced label at that state, modeled as a value between 0 and 1. A query action
Fi is only used to transfer reward between states using a discount factor � and
feature importance wf as described below.

1. Discount Factor (� 2 [0, 1]) The transfer rate of rewards from a state’s
report rewards and another state’s queries, usually between 0.8 and 0.99.

2. Feature Importance (wf 2 [�1, 1]) A normalized weighting to encourage or
discourage feature inclusion during training. It can also be used for offsetting
class imbalance [1] and encouraged deprecation of features.

(a) +1 indicates a more desirable feature

(b) 0 indicates neutral importance

(c) -1 indicates a less desirable feature
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Chapter 4

Learning Process

The learning process (Fig. 4.1) is split into three main interlinked processes and
two optional processes. These are listed below with a brief description. Greater
detail of each process is located in the following sections. Referring again to
Fig. 4.1, values are sampled from the black box, discretized, converted into prim-
itive low-level knowledge, and then provided to the signal interpreter. The sig-
nal interpreter perceives the inputs and outputs with the current state of the
knowledge and provides the interpretations to the knowledge producer and policy
trainer. The knowledge producer will attempt to create higher-level knowledge.
The policy trainer will attempt to map perceived inputs to the perceived outputs,
producing a policy for each output. Finally, these policies become the control
information for controlling the black box.

Control 
Information

Signal 
Interpreter Knowledge Production

Low Level Knowledge

Discretization

Black Box

Policy 
Trainer

Goal 
State

Result 
State

Signal 
Generator

High-Level 
Knowledge

ID 
Manager

External 
Labels

Figure 4.1: Learning Process Flowchart
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4.1. DISCRETIZATION

1. Discretization Process – All values sent to the inputs and received from
the outputs of the black box are continuously sampled. This data is then
discretized, enabling tracking with the ID manager. As new data is expe-
rienced the feature-value space expands/contracts and existing knowledge
re-associates.

2. Knowledge Production Process – The interpreted input and output sig-
nals are used to extend the current knowledge to higher-level knowledge.
Simple patterns are identified by simultaneity, sequentiality, or other more
complex methods and tracked with the ID manager.

3. Policy Training Process – Using the current state of the knowledge, the
inputs and outputs are mapped to knowledge instances (vocabulary). These
mapped values are then used for training a reinforcement learning-based
decision tree.

4. Skill Training Process (optional) – Using the other processes, external
knowledge may be introduced. The other processes allow recognizing and
remembering repeated knowledge instances. As such, a user may man-
ually repeat an activity multiple times and this activity will become its own
knowledge instance.

5. Labeling Process (optional) – The other processes uses internal identifiers
for tracking. As such they are not human-interpretable. The labeling process
allows external naming to be introduced without affecting learning. As such,
a user may manually assign a human-interpretable label to any generated
vocabulary.

4.1 Discretization

The first step of producing knowledge is establishing distinguishability. That is,
there must be the ability to distinguish a difference between the raw values within
the input space and the raw values within the output space. At any time, new val-
ues may be submitted as input parameters and new responses may be produced
at the outputs. Additionally, in an even more dynamic process, inputs and outputs
may be added or removed. (i.e. the scope of the black box changes.)
At the beginning of learning, the values of a space may appear very binary, such
as black/white, yes/no, or on/off. However, as more data is experienced, the
space may transform into categorical and even continuous. For this work, true
continuous space will not be considered and instead be modeled as categorical
with potentially many options.

13



4.1. DISCRETIZATION

Considering these factors, the discretization process will assign unique identifiers
to all raw data it considers to be at a distinguishable level. There are many suc-
cessful discretization options from statistics and clustering techniques, such as
histograms, bucketing, and binary splitting. Many of these processes also require
prior information or multiple passes through the source data; some methods are
also supportive of streams. With streams, the discretization ranges may change.
As such, an important topic is enabling preservation of existing knowledge.
A typical discretization process focuses on having as few ranges as possible,
such that the labels are accurately assigned. It may also be supervised or un-
supervised. Unlike in this scenario, neither the value data nor the label data is
known, so an unsupervised top-down approach is used. Instead, specific values
are assumed to re-occur, with a certain amount of gaussian noise, indicating the
similarity of the values. Considering these properties, the discretization method
must contain the following capabilities.

• Learning new and significantly different values.

• Expanding dynamically for adding new ranges.

• Compressing dynamically for removing old ranges.

• Allow increased sensitivity in local regions.

4.1.1 Distinguishability

Each input x or output y data stream is tracked independently. The stream of
values for a single data source are converted into a dynamic set of ranges r 2 R,
dependent on the previously experienced values in that stream.
As defined in the section 3.2, each of these ranges (or bins) includes statistics
for tracking the average µ and standard deviation �. Using these statistics, the
lower and upper limits of the range are compared with the statistical 6-standard-
deviations range of the collected data. From this comparison, seven situations
may occur, leading to a specified action as shown in table 4.1.

14



4.1. DISCRETIZATION

Table 4.1: Action scenarios during discretization

Visual Description Action

Low High

�6� µ +6�
•••••

Both 6� points are within
the range limits, and the
values are approx. 68.1%
in µ± 1� .

None

Low High

�6� µ +6�
• ••• • Both 6� points extend out-

side the range limits.
Split at average.

Low High

�6� µ +6�
• • • • • • • Distribution of data is too

flat. (outside of 1�)
Split at average µ.

�1 High

�6� µ +6�
• ••• •

The range contains data
and the the lower limit is
�1.

Split at �6�.

Low +1

�6� µ +6�
• ••• •

The range contains data
and the the upper limit is
+1.

Split at +6�.

Low High

�6� µ +6�
• ••• • The �6� overlaps lower

range.
Merge with lower range.

Low High

�6� µ +6�
• ••• • The +6� overlaps higher

range.
Merge with higher range.

The discretization process (Alg. 4.1) receives a value from the stream (line 5),
finds the appropriate range, updates the range statistics (line 7), and then checks
the distribution (line 20). If the range does not contain an enclosed gaussian
distribution, splitting or merging occurs, which discovers repeating values within
the stream.
During splitting (Alg. 3.1), a range is broken into two new ranges by some midpoint
value. Naturally, the statistics must be purged, as the internal data locations are
not known. During merging (Alg. 3.2), two ranges are combined and the old range
removed. Naturally, the statistical data from these ranges can be combined.
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4.1. DISCRETIZATION

Algorithm 4.1 Discretize stream
1: procedure DISCRETIZESTREAM(stream)
2: R rangeList . globally available
3: R.Insert(range(�1,+1)) . range with Low = �1 and High = +1
4: while (true) do . forever
5: v  stream.GetV alue()

6: r  FindRange(v, “value”) . See Alg. 4.2
7: //Update range statistics.
8: r.Count = r.Count+ 1

9: r.Sum = r.Sum+ v

10: r.SqSum = r.SqSum+ v
2

11: r.Avg = r.Sum/r.Count

12: r.StdDev = r.SqSum� 2 ⇤N ⇤ r.Avg + r.Count ⇤ r.Avg
2

13: r.Neg6Sigma r.Avg � 6 ⇤ r.StdDev

14: r.Pos6Sigma r.Avg + 6 ⇤ r.StdDev

15: //Check percentage values within 1 Std. Dev.
16: if (r.Neg1Sigma < v) and (v < r.Pos1Sigma) then
17: r.Count1Sigma = r.Count1Sigma+ 1

18: r.Percent1Sigma r.Count1Sigma/r.Count

19: end if
20: //Check for end case scenario
21: if ((r.Low < r.Neg6Sigma) and (r.Pos6Sigma < r.High) then
22: if (r.Percent1Sigma < 0.60)) then
23: restart loop
24: end if
25: end if
26: //6 sigma ranges are outside the high and low.
27: if (r.Neg6Sigma < r.Low) and (r.High < r.Pos6Sigma) then
28: SplitRange(r, r.Avg) . See Alg. 3.1
29: end if
30: //High or low is infinity.
31: if (r.Low = �1) then
32: SplitRange(r, r.Neg6Sigma) . See Alg. 3.1
33: else if (bin.High = +1) then
34: SplitRange(r, r.Pos6Sigma) . See Alg. 3.1
35: end if
36: //Data is evenly distributed rather than gaussian.
37: if (r.Percent1Sigma < 0.60) then
38: SplitRange(r, r.Avg) . See Alg. 3.1
39: end if
40: //One of the 6 sigma ranges overlaps another range.
41: if (r.Neg6Sigma < r.Low) then
42: rLow  FindRange(r.Low, “high”) . See Alg. 4.2
43: MergeRanges(rLow, r) . See Alg. 3.2
44: else if (r.High < r.Pos6Sigma) then
45: rHigh FindRange(r.High, “low”) . See Alg. 4.2
46: MergeRanges(r, rHigh) . See Alg. 3.2
47: end if
48: end while
49: end procedure
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4.1. DISCRETIZATION

Algorithm 4.2 Find range
1: //Global ranges list
2: R rangeList

3: procedure FINDRANGE(value, property)
4: //Search by value inside range
5: if (property = “value”) then
6: for all r 2 R do
7: if (r.Low <= value) and (value < r.High) then
8: return r

9: end if
10: end for
11: //Search by range’s low property
12: else if (property = “low”) then
13: for all r 2 R do
14: if (r.Low = value) then
15: return r

16: end if
17: end for
18: //Search by range’s high property
19: else if (property = “high”) then
20: for all r 2 R do
21: if (r.High = value) then
22: return r

23: end if
24: end for
25: end if
26: end procedure

c2c1c1c1c1 c1c1c1c1 c2 c2 c2 c2 c2 c2c1c1c1 c1c1c1Knowledge:

5.00.20.0-0.10.1 0.3-0.10.10.3 5.1 4.9 4.8 5.2 5.1 5.0-0.20.10.2 0.00.10.1Raw Value:
50000 0000 5 5 5 5 5 5000 000Discretized:

Figure 4.2: Discretization and Low-Level Information

An example of a raw stream with the discretized and knowledge layers is shown
in Fig. 4.2. The raw layer shows the original stream data with noise representing
a binary signal, on 5 and off 0. This raw data is discretized into the first layer of
information and assigned unique identifiers like cn according to section 3.3.
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4.2. KNOWLEDGE PRODUCTION

-30 -20 -10 0 10 20 30 40 50

0

1

15.0010.000.00 5.00

Figure 4.3: Discretized Space, 6 ranges

An example of a generated discretizer with six ranges is shown in Fig. 4.3. Four
ranges represent the values 0, 5, 10, and 15. Two ranges represent [�1,�37]
and [ 53,+1]. The range limits (low and high) of each range are represented
by the vertical dotted lines. The inner data distribution within the range is rep-
resented by the bold dotted line and color bars. The average of each range is
displayed as the label.

4.1.2 Knowledge Preservation

Each range is tracked with a unique identifier. As such it may be associated with
other knowledge throughout higher-level systems, any systems built using this
process. When a range is split, that range’s identifier is purged and all knowl-
edge associated with it could become lost. To prevent this loss of knowledge, an
event is possible. This would allow higher level processes to properly handle the
split/merge event. For example, existing knowledge could be duplicated during a
split event, allowing learning to diverge from that point, rather than be reset.
An additional expansion of this technique is to retain old range information and
related knowledge. This layering would enable fast estimations when the input
and output knowledge account for different tolerances. Example: a color being
perceived as blue, instead of light blue, royal blue, green-blue, etc.

4.2 Knowledge Production

As described in section 4.1 and shown in Fig. 4.2, the raw data is discretized and
mapped to low-level knowledge instances. Using these lowest-level knowledge
instances, simple pairs are identified by simultaneity and sequentiality, which are
described in the following sections. Additionally, more complex combinations are
likely directly retrievable before additional layers are required. These additional
combinations and recursive layering are however delayed for future work.
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4.2. KNOWLEDGE PRODUCTION

4.2.1 Sequentiality

An example of a stream with additional learned objects is shown in Fig. 4.5. The
stream layer, originally from Fig. 4.2, displays a signal turning on c1 and off c2. As
data is received, the previous knowledge instance is remembered and compared
with the current knowledge instance. The pairwise combinations are stored, pro-
ducing the following new pieces of knowledge.

…Sequentiality:
c2c1c1c1 c1 c2 c2 c2 c2 c2c1c1 c1Stream:

c3c4c3 c3
c3 c5 c6

Figure 4.4: Sequentiality in Knowledge Layers

1. c3 = (c1; c1): Staying off.
2. c4 = (c2; c2): Staying on.
3. c5 = (c1; c2): Switch from off to on.
4. c6 = (c2; c1): Switch from on to off.

4.2.2 Simultaneity

An example of two input streams and a simultaneity layer of learned knowledge
instances is shown in Fig. 4.5. Both streams contain two unique values and
certain combinations of these inputs occur together regularly. Notice that one
combination (c2, c3) does not occur, hence it is not learned.

Simultaneity:
c4c3c3c3 c3c3c3c3 c4 c3c3c3Stream 2:

c5

c2c1c1c1c1 c1c1c1c1 c2 c1c1c1Stream 1:
c4

c6 c7

Figure 4.5: Simultaneity in Knowledge Layers

1. c5 = (c1, c3): Off/Off
2. c6 = (c1, c4): Off/On
3. c7 = (c2, c4): On/On
4. c7 = (c2, c3): On/Off (Not present)
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4.2. KNOWLEDGE PRODUCTION

4.2.3 Higher Knowledge Layers

An important factor of learning is the creation of higher level knowledge, most of
which is only achievable through recursive layer generation. An example of one
such recursive technique, while learning a triangle signal, is shown in Fig. 4.6 and
further clarified with table 4.2.
Pass 1 of the triangle signal contains no previous knowledge except the low-
level values. It is therefore interpreted as only low-level knowledge instances.
However, it generates five new knowledge instances that can be used to further
simplify the description of the triangle. Upon pass 2 of the triangle, a recursive
recognition happens. The first two points are originally interpreted as c1 and c2,
but after interpretation (Alg. 4.3) they are replaced by c4. The next two values are
again interpreted at a higher level as c6 and then again as c8. The same triangle
signal now only requires three knowledge instances to describe it. During this
pass, two more knowledge instances are generated at an even higher level. This
process repeats until pass 4, where the entire triangle is finally learned as a single
knowledge instance.

Stream:

c2
c1

c2

c3 c3

c1

Time (t)t1 t2 t3 t4 t5 t6

c2c1 c2 c3 c3 c1

Figure 4.6: Triangle Signal

Table 4.2: Recursive know. generation

Pass Interpretation Generated Knowledge

1 c1; c2; c3; c3; c2; c1

c4 = (c1; c2)

c5 = (c2; c3)

c6 = (c3; c3)

c7 = (c3; c2)

c8 = (c2; c1)

2 c4; c6; c8
c9 = (c4; c6)

c10 = (c6; c8)

3 c9; c10 c11 = (c9; c10)

4 c11 -
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4.3. POLICY TRAINING

Algorithm 4.3 Recursive interpretation of stream
1: procedure RECURSIVEINTERPRETSTREAM(stream)
2: cPrev  memory

3: //Sample the stream
4: v  stream.GetV alue()

5:
6: //Discretize the raw value
7: r  FindRange(v, “value”) . See Alg. 4.2
8:
9: //Find current knowledge instance

10: cCurr  FindKnowInstance(r.ID)

11:
12: //Try to interpret the pair with higher level knowledge
13: if (cPrev 6= blank) then
14: cInter  FindKnowInstance(cPrev, cCurr)

15: return cInter

16: else
17: //Set the memory as the current knowledge instance
18: memory  cCurr

19: return cCurr

20: end if
21: end procedure

4.3 Policy Training

A separate policy is generated for each output of the black box, using the inputs of
the black box as the possible features space. However, before submission to the
policy learner, they are interpreted through the existing knowledge. By doing so,
the policy continuously develops through time using the highest-level knowledge,
producing the simplest decision tree.

4.3.1 Action Decision

At a current state sn, the appropriate query or report action must be determined.
A query will cause transition to a different state, or a report will cause the end-
training scenario, which updates the expected rewards of the reports at that state.
This determination requires comparing the expected reward of all known queries
and report options, leading to the action with highest expected reward.
At a given state sn, there are likely many query options. A unique query at this
state Fs,i exists for each combination of feature name f , feature value v, and clas-
sification label c as shown in (4.1). However, for a given training instance many
of these queries will not be valid, and must be filtered. Similarly, multiple report
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4.3. POLICY TRAINING

actions Rs,j may also exist, one for each unique occurrence of a classification
label as shown in (4.2).

Fs,i = F(fi, vi, cj) (4.1)

Rs,j = R(cj) (4.2)

Because each query and report have an associated expected reward Q at that
state s, the expected rewards are determined respectively using (4.3) and (4.4).

QFs,i = Q(Fs,i) (4.3)

QRs,j = Q(Rs,j) (4.4)

4.3.2 Query Reward Calculation

At a current state sn, upon choosing a query Fs,i as the best action, the feature’s
value is obtained from the current training instance. Using this additional feature-
value pair, the next state sn+1 is found or create. If a new state is created, all
queries are given optimistic rewards of 1.0 to encourage exploration.
The expected reward of the next state QRs+1,j is retrieved and used to update
the expected reward of the current state’s query Fs,i. The query’s new expected
reward is a function of the discount factor �, feature importance w, and report
reward Q(Rs+1,j) as shown in (4.5). If the feature’s importance is set to -1, no
reward is transferred, whereas if the feature’s importance is set to 0, only the dis-
count factor is relevant. For example, new training data can deprecate a feature
by setting the importance nearer to -1 and also encourage inclusion of a new
feature by setting the importance nearer to +1.

QFs,i = �(1 + wf )QRs+1,j (4.5)

4.3.3 Report Reward Calculation

Each report Rj at state s is simply a percentage pRj of the witnessed labels at that
state, modeled between 0 and 1. As such the total reward at any state is always
equal to 1.0 according to (4.6) but distributed across all known report actions.

1.0 = pR1 + pR2 + ...+ pRj (4.6)
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4.3. POLICY TRAINING

4.3.4 Parallel Query Updates

For any given state, there exists a set of super-set states that lead to the same
state, if the appropriate query is used [1]. An example of this is shown in table 4.3.

Table 4.3: Example of Parallel Query Updates

Feature State 1 State 2 State 3 State 4 State 5

Feature 1 E = 0.57 w w w w

Feature 2 t E = 0.60 t t t

Feature 3 a a E = 0.53 a a

Feature 4 f f f E = 0.48 f

Reward 0.45 0.58 0.47 0.23 0.74

In table 4.3, state 1 will query Feature 1 because the expected reward is 0.57,
which is higher than report’s reward of 0.45. States 2-4 also fit the same condi-
tion. Hence, they will all transition to state 5, retrieving the report action’s reward
of 0.74, and updating the query’s reward appropriately. Hence, these additional
queries can also be updated at each state transition, requiring less training in-
stances for convergence.

4.3.5 Parallel Report Updates

During the end condition of a training cycle, the report actions are updated against
the known class label from the training instance. It is also valid to state that all
report actions of visited states during that training cycle, could also be updated,
because they are all super-sets of the final state [1].
Looking again at table 4.3, state 5 is a guaranteed end-scenario because there
are no more features. Hence, if this state is reached the report action will be
utilized, and the classification label’s reports updated. However, to get to this
state, any of states 1-4 must have been visited first. Hence, the report’s expected
rewards at states 1-4 can also be updated, thereby again speeding up conver-
gence.
In theory this seems appropriate, however there exists a convergence problem
by introducing reward before the end condition. During training, the super states
(states 1-4) of the normally expected end state (state 5) may be visited more
often, thereby converging to the percentage probability earlier. Hence, a bias is
formed, and training is unable to discover new classification labels deeper in the
state space. This is illustrated in Fig. 4.7 and Fig. 4.8, comparing regular reward
propagation and propagation with parallel report updates respectively.
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4.3. POLICY TRAINING

Fig. 4.7 and Fig. 4.8 show four states vs time with the expected rewards of the
queries and reports. Each state contains a set of features s, various queries Fi

and reports Rj. For simplicity only one report’s expected reward QR is shown
per state. Fig. 4.7 shows the normal progression and eventual convergence of
the expected rewards (and probabilities). Fig. 4.8 shows the progression and
convergence problem when parallel report updates are utilized. Both processes
are described for each time step in table 4.4.

s = w,-,-
QR = 1.0

s = w,t,-
QR = 1.00

s = w,-,a
QR = 1.00

Q(F2) = 1.00 Q(F3) = 1.00

s = w,t,a
QR = 1.00

Q(F2) = 1.00Q(F3) = 1.00

s = w,-,-
QR = 0.40

s = w,t,-
QR = 0.52

s = w,-,a
QR = 0.55

Q(F2) = 0.41 Q(F3) = 0.44

s = w,t,a
QR = 0.67

Q(F2) = 0.54Q(F3) = 0.54

s = w,-,-
QR = 0.55

s = w,t,-
QR = 0.45

s = w,-,a
QR = 0.8

Q(F2) = 0.37 Q(F3) = 0.64

s = w,t,a
QR = 0.75

Q(F2) = 0.60Q(F3) = 0.60

s = w,-,-
QR = 0.45

s = w,t,-
QR = 0.6

s = w,-,a
QR = 0.7

Q(F2) = 0.48 Q(F3) = 0.56

s = w,t,a
QR = 0.99

Q(F2) = 0.79Q(F3) = 0.79

t=1 t=25 t=50 t=100

Figure 4.7: States vs Time, Regular Updates
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QR = 0.53

s = w,-,a
QR = 0.65
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Q(F2) = 0.37 Q(F3) = 0.64
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Figure 4.8: States vs Time, Parallel Report Updates
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Table 4.4: Reward Propagation, Description vs Time

Time [t] Regular Report Updates Parallel Report Updates

1
The initial states created but not re-
visited.

The initial states created but not re-
visited.

25
A new classification label is en-
countered, splitting the reward.

The expected rewards are converg-
ing faster. A new classification label
is encountered, splitting the reward.

50
Reward propagation continues
from end state through the super
states.

The super states have already con-
verged, preventing exploration.

100 Convergence reached. No changes occur.

4.3.6 Gini Impurity Index

The Gini impurity index monitors the ongoing validity of the states, preventing the
policy from guessing. Each time the reports are updated, the state’s Gini impurity
index is also updated according to (4.9), which is normalized by the number of
reports j by the maximum possible Gini impurity index using (4.8). If this nor-
malized value exceeds 0.99, then the state has a nearly even probability for each
classification label, hence the reports and expected rewards are reset, allowing
for learning to restart.

GiniIndex = 1�
X

j

pRj

2 (4.7)

MaxGiniIndex = 1� j(1/j)2 = 1� (1/j) (4.8)

NormGiniIndex = GiniIndex/MaxGiniIndex (4.9)

4.3.7 Dimensionality

A large concern of modeling the state as a combination of features of the instance,
is the potentially large state space, and the heavy search requirements during
state transitions. A few simple calculations can show that 10 features with 2
values has 210 = 1024 possible states. Likewise 3 options produces 310 = 59049

possible states and 4 options produces 410 = 1048576 possible states. It is clear
to see that datasets with hundreds of features and several discrete values could
be problematic.
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4.4. SKILL TRAINING

However, it is important to note that this is the exact reason why reinforcement
learning is a good approach, as opposed to exhaustive techniques like a lookup
table. As shown in the following example results of Fig. 4.9, a synthetic dataset
did not need to explore all of these combinations. It learns quickly to avoid many
state space ranges, and hence only explorers a small subset. For reference, this
synthetic dataset with 22 features and 4+ value options per feature (5.2 average)
has 1.219E+14 state possibilities. However, training in this example only required
1465 states, which is 1.202E-9 percent of the maximum possible state space and
still provided 99.7% accuracy.
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Figure 4.9: Created States vs Processed Data

It should be noted that other issues of high dimensionality still exist such as the
potentially impractical search times. In a standard search, the state space may
involve multiple filters to look up another state during transitions. Hence an alter-
native approach for locating states is necessary. To reduce search times of the
state space, a hash code is generated from a state’s feature-value pairs and then
used as the key. In this way, a working state can be added to the state space
easily and existing states can be located quickly.

4.4 Skill training

Using the other processes, external knowledge may be introduced. The other
processes allow recognizing and remembering repeated knowledge instances.
As such, a user may manually repeat an activity multiple times and this activity
will become its own knowledge instance.
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Chapter 5

Control

The final result of the learning process flowchart (Fig. 4.1) is control information
about the black box. This control information, stored in the form of a Markov Deci-
sion Process with various state spaces, represents a decision tree that maps the
interpreted inputs to the interpreted outputs. Therefore an open-loop system can
be simply controlled by a reversal of the decision tree to determine the required
input parameters of the desired output state.
There are two methods by which a new instance can be classified. The first,
using the complete MDP policy according to Alg. 5.1 and Alg. 5.2. The second,
summarizing the MDP policy into a simplified decision tree according to Alg. 5.3
and then using standard decision tree deduction.
Each method has its advantages and disadvantages. Using the complete MDP
policy allows for large flexibility because it compares all known features at each
state, enabling it to handle partial or incomplete information. Naturally, a disad-
vantage is that this also requires more processing and may become slow if the
feature space grows very large. Conversely, the summarized decision tree is fast
but sacrifices handling of partial instances, because it contains only the most im-
portant features from the MDP and classifies within that specific feature space
only.
An example decision tree for the "exclusive or" logic operation is shown in Fig. 5.1.
The generated knowledge instances are shown in tables 5.1 and 5.2 with discus-
sion in section 7.3.
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Bool2

(108) True (112) Stay True (147) False (151) Stay False (154) False to True (156) True to False

Bool1

(41) False (45) Stay False (164) True
(28) False : 12%
(36) True : 88%

(44) Stay True : 18%
(56) Stay False : 36%

(65) False to True : 46%

Bool1

Bool1

(41) False (164) True
(28) False : 84%
(36) True : 16%

(28) False : 85%
(36) True : 15%

(28) False : 14%
(36) True : 86%

(44) Stay True : 86%
(56) Stay False : 3%

(65) False to True : 12%

(45) Stay False
(44) Stay True

(164) True
(44) Stay True : 5%

(50) True to False : 15%
(56) Stay False : 80%

(166) Stay True
(44) Stay True : 72%

(50) True to False : 23%

(168) False to True

(44) Stay True : 40%
(65) False to True : 60%

(164) True
(44) Stay True : 82%
(56) Stay False : 45%

(65) False to True : 13%

(166) Stay True
(44) Stay True : 5%

(50) True to False : 14%
(56) Stay False : 81%

(45) Stay False
(44) Stay True : 70%

(50) True to False : 30%

(167) True to False

Bool1

(56) Stay False : 60%
(65) False to True : 40%

(56) Stay False : 68%
(65) False to True : 32%

Figure 5.1: Decision Tree, ’Exclusive Or’ Operation

Table 5.1: Generated knowledge inputs

Bool1

ID Name Content

8 [-1 |1| 0.00]

41 False [0.00 (0.00) |0.00| (0.00) 0.00]

45 Stay False (41; 41)

164 True [0.00 (5.00) |5.00| (5.00) 5.00]

165 [5.00 |1| 1]

166 Stay True (164; 164)

167 True to False (164; 41)

168 False to True (41; 164)

Bool2

ID Name Content

34 [5.00 |1| 1]

108 True [4.47 (5.00) |5.00| (5.00) 5.00]

112 Stay True (108; 108)

146 [-1 |1| 0.00]

147 False [0.00 (0.00) |0.00| (0.00) 4.47]

151 Stay False (147; 147)

154 False to True (147; 108)

156 True to False (108; 147)

Table 5.2: Gen. know. outputs

Exclusive Or

ID Name Content

14 [-1 |1| 0.00] (1)

28 False [0.00 (0.00) |0.00| (0.00) 0.56]

35 [0.56 |1| 5.00] (1)

36 True [5.00 (5.00) |5.00| (5.00) 1]

44 Stay True (36; 36)

50 True to False (36; 28)

56 Stay False (28; 28)

65 False to True (28; 36)
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Algorithm 5.1 Classify an instance by MDP policy
1: procedure CLASSIFYBYMDP(dataV ector)
2: //Start with root node, with only queries
3: currState policy.rootState

4: while (true) do
5: //Get query with highest reward
6: bestQuery  GetBestQuery(currState, dataV ector) . See Alg.5.2
7: if (bestQuery 6= blank) then
8: //Transition to the next state
9: currState GetState(currState, bestQuery)

10: else
11: //No query, so retrieve the labels
12: currLabels currState.Labels

13: break loop
14: end if
15: end while
16: //Pick label by percentage probability
17: theLabel PickLabel(currLabels)

return theLabel

18: end procedure

Algorithm 5.2 Get best query, by comparing to label
1: procedure GETBESTQUERY(currState, dataV ector)
2: //Retrieve releated queries
3: for all (feature 2 dataV ector) do
4: validQuery  currState.GetQuery(feature)

5: valQueries.Insert(validQuery)

6: end for
7: //Remove queries with lower reward than labels
8: for all (query 2 valQueries) do
9: qryReward query.Reward

10: lblReward Labels.Rewards.Min

11: if (qryReward < lblReward) then
12: valQueries.Remove(query)

13: end if
14: end for
15: //If no queries are better than the labels, return blank
16: if (valQueries.Count = 0) then return blank

17: end if
18: //Pick the query with highest reward
19: bestQuery  valQueries.Max

return bestQuery

20: end procedure
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Algorithm 5.3 Summarize the MDP policy to a decision tree
1: procedure POLICYTOTREE(policy)
2: //State with root node, with only queries
3: rootState policy.rootState

4: rootNode (new)TreeNode

5: //Start recursive subtree creation
6: PolicyToTree(rootState, rootNode)

7: //Return the resulting tree return rootNode

8: end procedure
9: procedure POLICYTOTREE(currState, parentNode)

10: //Get the best queries and labels
11: bestGroupQueries = getQueriesMaxReward(currState)

12: lblReward currState.Labels.Rewards.Min

13: //Filter the the queries
14: for all (query 2 bestGroupQueries) do
15: qryReward query.Reward

16: if (qryReward < lblReward) then
17: bestGroupQueries.Remove(query)

18: end if
19: end for
20: //Create a subnode in the tree
21: featureNode (new)TreeNode

22: parentNode.SubNodes.Insert(featureNode)

23: //Add queries to the node
24: for all (query 2 bestGroupQueries) do
25: queryNode (new)TreeNode

26: parentNode.SubNodes.Insert(queryNode)

27: currState getState(currState, query)

28: PolicyToTree(currState, queryNode)

29: end for
30: //Add labels as leaves to the node
31: for all (label 2 currState.Labels) do
32: featureNode.Leaves.Insert(label)
33: end for
34: //Return the parent node return parentNode

35: end procedure
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Chapter 6

Experiments Setup

6.1 Discretization

The discretization process (Sec. 4.1.1) is initially tested with self-generated syn-
thetic data, to control the quality of the input. A set of crisp numeric values are
defined and then a gaussian function adds noise with a predetermined maximum.
Such sets include binary, categorical, and approximated continuous spaces.
Four experiments are performed to show the development of a set of ranges.
Naturally the first consideration is the affect of noise. Next is the potential devel-
opment or transitioning of an initially binary perspective to categorical and then
finally continuous.

1. Binary - The affect of noise on a binary learning task.

2. Categorical - The affect of noise on a categorical learning task.

3. Increasing Resolution (Ranges vs Resolution) - The affect of increasing res-
olution, to provide enough distinguishability for a continuous system.

4. Varying Resolution - The affect of ranges that have different resolution re-
quirements.
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6.2. KNOWLEDGE PRODUCTION

6.2 Knowledge Production

Given that the inputs and outputs of a black box have been successfully dis-
cretized, the unique values are now distinguishable. These identified ranges are
now converted to knowledge instances (Sec. 3.3).
Two experiments with predetermined signals are submitted to the knowledge pro-
ducer and knowledge is generated. The list of identified items is presented and
compared agains the theoretical results.

1. On/Off - Binary Data
2. Step - Categorical

6.2.1 On/Off - Binary Data

Two binary signals with two value levels are shown in Fig. 6.1. Each signal has a
different repetition rate, enabling all combinations of the two signals during testing
of logical operations.

0
1
2
3
4
5

0 5 10 15 20 25 30 35

Stream 1

0
1
2
3
4
5

0 5 10 15 20 25 30 35

Stream 2

Time

Figure 6.1: Binary Data Streams

6.2.2 Step - Categorical

A categorical signal with five value levels is shown in Fig. 6.2. Notices that each
value is held for three time intervals. This is to ensure that a constant value is
experienced on a given input/output regardless of the sample rate of the black
box.

0
1
2
3
4
5

0 5 10 15 20 25 30 35Time

Figure 6.2: Categorical Data Streams
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6.3. POLICY TRAINING

6.3 Policy Training

Given that the the inputs and outputs are converted into a set of vocabulary
(knowledge instances), a prediction policy is created for mapping the input vo-
cabulary to the output vocabulary (Sec. 3.4). This mapping of the generated
knowledge is then used to reproduce the signal and the mean-square-error is
calculated. Three experiments with one categorical, one continuous, and one vir-
tual environment are performed. The generic process of a simulated black box
is demonstrated in algorithm 6.1, which specifies a set of inputs/outputs (line 5),
update process (line 9), and update interval. The update process runs once per
update interval and uses the input values to calculate and set the output values.

1. Logic Operations - Categorical
2. Trigonometric Functions - Continuous
3. Robotic Arm

Algorithm 6.1 Black box simulator
1: procedure CREATEBLACKBOX(inputNames, outputNames, updateProcess,

updateInterval)
2: //Create template black box
3: blackBox

4: //Configure the inputs and outputs
5: blackBox.inputs listInputs

6: blackBox.outputs listInputs

7: //Update the black box forever
8: while true do
9: //Calculate the outputs using the inputs blackbox.Run(updateProcess)

10: //Wait some time before running again
11: Wait(updateInterval)

12: end while
13: return blackBox

14: end procedure
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6.3. POLICY TRAINING

6.3.1 Logic Operators

A virtual black box of the common "and", "or" and "xor" operators (out1, out2, out3
respectively) is used for testing a categorical space. The update process for the
input to output mappings are shown via Fig. 6.3 and algorithm 6.2.

Black Box
in1

in2

out1
out2
out3

Figure 6.3: Black Box for Logic Operations

Algorithm 6.2 Black box simulation update process, logic operators
1: procedure LOGICBLACKBOXUPDATEPROCESS

2: //and
3: if (in1 >= 4.5) and (int2 >= 4.5) then
4: out1  5.0

5: else
6: out1  0.0

7: end if
8: //or
9: if (in1 >= 4.5) or (in2 >= 4.5) then

10: out2  5.0

11: else
12: out2  0

13: end if
14: //xor
15: if ((in1 >= 4.5) and (in2 <= 4.5)) or ((in1 <= 4.5) and (in2 >= 4.5)) then
16: out3  5.0

17: else
18: out3  0.0

19: end if
20: end procedure
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6.3. POLICY TRAINING

6.3.2 Trigonometric Functions

A virtual black box of the three standard trigonometric functions "sin", "cos" and
"tan" (out1, out2, out3 respectively) is used for testing continuous space. The
update process for the input to output mappings are shown via Fig. 6.4 and algo-
rithm 6.3.
Synthetic data is created at an interval of 1 for a range of 0 to 180 degrees.
The complete set of values was was submitted 5 times to the black black box in
random order. The trained policy is then used to recreate the sin, cos, and tan

signals and the error is calculated against the true values.

Black Boxin1

out1
out2
out3

Figure 6.4: Black Box for Trigonometric Functions

Algorithm 6.3 Black box simulation update process, trigonometric functions
1: procedure TRIGBLACKBOXUPDATEPROCESS

2: out1  sin(in1)

3: out2  cos(in1)

4: out3  tan(in1)

5: end procedure
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6.3. POLICY TRAINING

6.3.3 Robotic Arm

A virtual black box of a robotic arm with three inputs (in1 = motor1[volts], in2 =

motor2[volts], in3 = motor3[volts]) and five outputs (out1 = motor1[deg], out2 =

motor2[mm], out3 = motor3[deg], out4 = x[mm], out5 = y[mm]) is shown in Fig. 6.5
and Fig. 6.6. The model simulates a pivoting adjustable length arm with pivot-
ing end factor. It contains two angular position sensors, one length sensor, and
two positions sensors. The update process for the input to output mappings are
shown via algorithm 6.4.

Black Box
in1

out1
out2
out3in2

in3 out4
out5

Figure 6.5: Black Box for a Robotic Arm

Motor 1

Motor 3

X0

Y0

Motor 2

L1

L2

L3

T1

T3
y

x

Figure 6.6: Robotic Arm
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6.3. POLICY TRAINING

Algorithm 6.4 Black box simulation update process, robotic arm
1: //Internal memory, robot state
2: constanttheta1  45 . deg
3: constanttheta3  135 . deg
4: constantLENGTH1  300 . mm
5: length2  150 . mm
6: constantLENGTH3  50 . mm
7: procedure ROBOTICARMBLACKBOXUPDATEPROCESS

8: //Read inputs
9: voltageMotor1  in1

10: voltageMotor2  in2

11: voltageMotor3  in3

12: //Update Motor 1 Angle
13: theta1  theta1 + (0.1 ⇤ voltageMotor1)

14: if (theta1 <= 45) then
15: theta1  45

16: else if (theta1 >= 180) then
17: theta1  180

18: end if
19: //Update Motor 2 Length
20: length2  length2 + (0.1 ⇤ voltageMotor2)

21: if (length2 <= 100) then
22: length2  100

23: else if (length2 >= 300) then
24: length2  300

25: end if
26: //Update Motor 3 Angle
27: theta3  theta33 + (0.1 ⇤ voltageMotor1)

28: if (theta3 <= 90) then
29: theta3  90

30: else if (theta3 >= 270) then
31: theta3  270

32: end if
33: //Calculate x,y coordinates of end factor
34: thetaAbs1  180 + theta1

35: thetaAbs3  thetaAbs1 � 180 + theta3

36: x LENGTH1 +Cos(thetaAbs1) ⇤ length2 +Cos(thetaAbs3) ⇤ LENGTH3

37: y  0 +Sin(thetaAbs1) ⇤ length2 +Sin(thetaAbs3) ⇤ LENGTH3

38: //Update Outputs
39: out1  theta1

40: out2  length2

41: out3  theta3

42: out4  x

43: out5  y

44: end procedure
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Chapter 7

Results

7.1 Discretization

Reading the results
The following sections include figures similar to Fig. 7.2, but with multiple ranges,
instead of just one. Each range is represented textually in the form shown by
Fig.7.1. Each chart contains the following elements:

1. Average - The text directly above the dotted line.
2. Low - The light vertically dotted line.
3. High - The light vertically dotted line.
4. Distribution - The bold dotted line.
5. Inner Histogram - Data percentage per std. dev. from the average.

Low -6! Average +6! High Data Count

[10 (-1.34) |0| (1.78) 10) [47]

Figure 7.1: Range Nomenclature

0 2 4 6 8 10

0

1

5.00

0 2 4 6 8 10

0

5.02

Figure 7.2: Example Ranges as Charts
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7.1. DISCRETIZATION

7.1.1 Binary Data

Fig. 7.3 shows two bins with recurring values of 0.0 and 5.0. The test is repeated
with increasing noise until the noise overlaps. It can be seen that at low noise
levels, the gaussian distributions are properly determined. However, at noise
levels above 2.4, the data overlaps and ranges are no longer properly generated.

Noise 0.01
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Noise 2.0
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0
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Noise 2.4
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Figure 7.3: Two Ranges with Increasing Noise
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7.1. DISCRETIZATION

7.1.2 Categorical Data

Similar to the binary data results, Fig. 7.4 also shows well-formed ranges until the
noise starts overlapping. This effect can clearly be seen between the noise levels
of 2.4 and 2.6.
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Figure 7.4: Four Ranges with Increasing Noise
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7.1. DISCRETIZATION

7.1.3 Continuous Data

Fig. 7.5 shows a range of 0 to 10 with increasing accuracy requirements (lowering
interval size). As new data in finer grainer intervals is submitted to black box, the
number of ranges adapts to account for the new distributions.
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Figure 7.5: Generated Ranges vs Resolution

7.1.4 Varying Resolution

Fig. 7.6 shows a discretization process with three ranges and two different ac-
curacy requirements. A single range represents data between -9.5 to 4.5 and
another range between 11.0 to 20.5. However, there are several more ranges in
between 4.5 to 11.0.
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1

15.007.508.00 10.006.50 9.505.506.000.00 7.00 9.005.00 8.50

Figure 7.6: Varying Resolution
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7.2. KNOWLEDGE PRODUCTION

7.2 Knowledge Production

7.2.1 On-Off - Binary Data

Using the signal from Fig. 6.1, the following list of unique pieces of knowledge
were identified. The 8 unique items are shown in table 7.1 and table 7.2. 2 knowl-
edge instances represent the binary values, 2 represent ±1, and 4 represent the
transitions between values.

Table 7.1: Binary Signal 1, Gen. Knowledge

ID Name Content

223 (NaN) [5.00 |1| (1)1] [0]

216 (NaN) [-1 |1| 0.00] (1) [0]

217 False [0.00 (0.00) |0.00| (0.00) 3.33] [386]

226 False to True (217; 222)

218 Stay False (217; 217)

224 Stay True (222; 222)

222 True [3.33 (5.00) |5.00| (5.00) 5.00] [379]

225 True to False (222; 217)

Table 7.2: Binary Signal 2, Gen. Knowledge

ID Name Content

76 (NaN) [5.00 |1| (1)1] [0]

193 (NaN) [-1 |1| 0.00] (1) [0]

194 False [0.00 (0.00) |0.00| (0.00) 1.00] [404]

201 False to True (194; 180)

198 Stay False (194; 194)

183 Stay True (180; 180)

180 True [1.00 (5.00) |5.00| (5.00) 5.00] [404]

196 True to False (180; 194)
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7.2. KNOWLEDGE PRODUCTION

7.2.2 Step - Categorical

Using the signal from Fig. 6.2, the following list of 24 unique pieces of knowledge
were identified (Table 7.3). 6 knowledge instances represent the ranges while
18 represent the transitions between ranges. Notice that combinations such as
0.0 to 2.0 (110; 82) do not exist because those values never occur after each other.
Primitive knowledge instances are identified by the range details in the content

column.

Table 7.3: Categorical Signal Know.

ID Name Content

109 (NaN) [-1 |1| 0.00] (1) [0]

133 (NaN) [5.00 |1| (1)1] [0]

110 0.0 [0.00 (0.00) |0.00| (0.00) 0.17] [287]

123 0.0 to 0.0 (110; 110)

111 0.0 to 1.0 (110; 81)

81 1.0 [0.17 (1.00) |1.00| (1.00) 1.20] [284]

122 1.0 to 0.0 (81; 110)

101 1.0 to 1.0 (81; 81)

112 1.0 to 2.0 (81; 82)

82 2.0 [1.20 (2.00) |2.00| (2.00) 2.00] [287]

100 2.0 to 1.0 (82; 81)

83 2.0 to 2.0 (82; 82)

113 2.0 to 3.0 (82; 85)

85 3.0 [2.00 (3.00) |3.00| (3.00) 3.11] [281]

99 3.0 to 2.0 (85; 82)

98 3.0 to 3.0 (85; 85)

114 3.0 to 4.0 (85; 89)

89 4.0 [3.11 (4.00) |4.00| (4.00) 4.60] [282]

97 4.0 to 3.0 (89; 85)

96 4.0 to 4.0 (89; 89)

135 4.0 to 5.0 (89; 132)

132 5.0 [4.60 (5.00) |5.00| (5.00) 5.00] [140]

134 5.0 to 4.0 (132; 89)

136 5.0 to 5.0 (132; 132)
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7.3. POLICY TRAINING

7.3 Policy Training

7.3.1 Logic Operators

Figure 7.7 and table 7.4 show a quick learning of the logical operators. However,
they never converge to high accuracy, especially the xor operation with a 15%
error. After inspecting the decision trees, there is a theory that this is due to the
more complex knowledge instances adding confusion to the policy. As such, such
an investigation is mentioned for future considerations in section 8.
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Figure 7.7: Logic Operations, Percentage Error vs Passes

Table 7.4: Logic Operations,
Percentage Error

Passes And Or Xor

100 0.052 0.035 0.056

200 0.063 0.054 0.116

300 0.060 0.062 0.114

400 0.085 0.102 0.199

500 0.054 0.064 0.119

1000 0.078 0.058 0.150

2000 0.055 0.064 0.141

3000 0.078 0.070 0.133

4000 0.058 0.067 0.140

5000 0.084 0.070 0.136
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7.3. POLICY TRAINING

7.3.2 Trigonometric Functions

Figure 7.8 and table 7.5 show a decreasing MSE in the semi-continuous space
until the threshold MSE of 0.1. Snapshots of the real sin, cos, and tan curves
along with their predictions are shown in Fig. 7.9 at 5, 20, 30, and 35 passes.
The light green, blue, and gray lines show the true value while the points show
the predicted values.
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Figure 7.8: Trigonometric Functions, MSE vs Passes

Table 7.5: Trigonometric Functions, MSE
vs Passes

Passes Sin Cos Tan

5 0.123 0.440 840600726.029

10 0.051 0.341 88.506

15 0.030 0.191 687599294.505

20 0.042 0.234 26738111.788

25 0.030 0.102 44.134

30 0.021 0.087 29.396

35 0.007 0.090 22.547
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7.3. POLICY TRAINING
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Figure 7.9: Trigonometric Functions, Actual vs Predicted
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7.3. POLICY TRAINING

7.3.3 Robotic Arm

Although discretization of the input space occurred, discretization of the output
space did not. This appears to be because of limited repetition of the values;
training was only performed with 1000 cycles and required 30-60minutes. It could
perhaps be solved by training for many more cycles. Nonetheless, no learning
occurred during policy training.
This is however an expected result because the robotic arm black box has an
inner state. Without support for a closed-loop process, control is not expected to
be possible. The current learning process does not currently utilize feedback nor
does the process enable comparison between knowledge instances. As such,
such an extension is mentioned for future considerations in section 8.
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Chapter 8

Future Considerations

8.1 Topic Points

Below is a list of topics that become apparent during development or testing of this
work. They are not meant to be extensive, but rather to provide insight about any
future developments. Entries in bold have proposed extensions in section 8.2.

1. Multiple Degrees of Freedom – Many devices require multiple inputs, so
associations may be too complex for processing in a reasonable time. If
possible, consider ways to decompose the complex system.

2. Prevention of Incorrect Correlations – If many devices get added to the sys-
tem, it is possible that the system will confuse them. This is especially true
if cross-input-output knowledge production is developed.

3. Device Safety – The proper input values for a given black box are not
known. Some values may even be dangerous. As such prior knowledge
of valid inputs is currently required, and is not ideal.

4. Overlapping Ranges - There exist many situations were data can be per-
ceived as belonging to more than one class. This may be true at a low level
such as at the raw signals as well.

5. Black Box Delay - Each black box system has s different delay in translating
the input state to the output state. If the inputs are changed to quickly, their
effect on the system can created misleading or low-confidence results in the
learned policy.

6. Data Archival – The process is new and lots of data will be collected. The
system may be revised later and the old data may be reusable in the new
architecture.
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8.2. PROPOSED EXTENSIONS

7. Scalability – If many devices are added to the system, it will not be able to
be located in one location. Processing of the various nodes will need to be
distributed across multiple computers.

8. Date formats and times - The current system can only understand numeric
data. However, many time and date formats are stored in a mixed text/nu-
meric format.

9. Closed-Loop Systems - The current system is only capable of open-loop
systems. The results of the black box outputs should be used as inputs.

10. Comparable Knowledge - Knowledge Instances are currently independent
of each other. Information should be added allow simple greater-than and
less-than operations.

8.2 Proposed Extensions

1. Devices Safety - The valid range of values for the inputs is not known be-
fore processing and there is a high likelihood that some values could dam-
age the system. As such, a signal generator must be made that learns to
gradually explore the unknown range, the min and max known ranges from
discretization. A simple approach would be to explore these extremes un-
til a new unique range is formed. Upon developing this new input range,
continue to submit that knowledge instances through the black box until no
new output knowledge is generated. However, this could be limited if locally
insensitive zones exist.

2. Closed-Loop Control - The current system does not use the generated
outputs during the decision making process. The policy learner should be
adjusted to include the output and some type of heuristic function for deter-
mining distances between current output state and desired output state.

3. Optimized Closed-Loop - When using feedback into the system, the gen-
erated policy could be modeled as a graph search problem. The current
input vector, feedback vector, and desired output vector are nodes in the
graph. By finding the shortest path between them, this is the desired tra-
jectory of inputs that should be used to control the black box towards the
desired output.
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8.2. PROPOSED EXTENSIONS

4. Expanded Knowledge Production - The current system only considers
one form of pair-wise knowledge instance generation. Other approaches
using data mining or compression techniques could be introduced. This
would provide alternative and potentially simplified vocabulary when decid-
ing an action to take to achieve a desired output state.

5. Overlapping Ranges - A version of the discretization process may be pos-
sible with values belonging to more than one range. This would allow for
different tolerances of knowledge. An example would be the simultaneous
detection of colors, such as royal�blue, green�blue, and light�blue (high-
level knowledge) all being a type of blue (low-level knowledge);
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Chapter 9

Conclusions

An adaptive stream-based process has been developed for learning a set of vo-
cabulary to control a black box. The black box is continuously sampled to monitor
the state of the inputs and responses. From these samples, the value streams
are discretized into defined ranges and assigned identifiers for tracking. An in-
terpreter, combined with simple knowledge production techniques, then serves
to identify unique pieces of knowledge, providing a vocabulary for describing the
black box activity. Using the interpreted signals, the vocabulary is sent to a rein-
forcement learning-based decision tree induction process, creating a policy de-
scribing the mapping of each input to each output.
Testing was performed on three subsystems: discretization, knowledge produc-
tion, and policy training. The discretization process proved to accurately identify
repeated values in a stream under the condition that each unique value follows
a gaussian distribution. The knowledge production process also developed the
correct individual values and pair-wise values of a binary, stepped triangle wave,
and pseudo-continuous sin wave, proving that binary, categorical and continuous
data at a specified resolution can be learned.
Finally, the overall process was validated for an open-loop system by training on
two black boxes, simulating logical operators and trigonometric functions. Using
the trained policies, desired responses were produced and compared to the ex-
pected responses, enabling calculation of the error. MSE scores of less that 0.1
were achieved for the sin and cos functions. The tan function, due to its value ap-
proaching infinity at 90deg was only able to be estimated below 85deg and above
95 degrees. Interesting, the logical operators and, or, and xor were only able to
achieve 85% accuracy, due to the response time of the black box. This delay in
update provided misleading data to the learner. Finally, a simulation of a simple
robotic arm was used to test a black box with internal state, meaning closed loop
control should be required. As expected, the inputs were properly identified but
the outputs were not and hence the learner was unable to produce valid policies.
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Although the current iteration of this learning method is not able to develop a
closed loop control process for dynamic systems, it is able to control determinis-
tic systems and offers a framework for future development. Of the identified future
considerations, device safety, closed-loop control, expanded knowledge produc-
tion, and support for overlapping ranges appear to be most promising.
To support further development, all software developed during this work is avail-
able at https://github.com/chriswblake/Knowledge-Production-and-Control-
of-a-Black-Box-Using-Machine-Learning
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