

Ministry of Education and Science of the Russian Federation
Peter the Great St. Petersburg State Polytechnic University

Institute of Computer Science and Control Systems

Control Systems and Technology Department

Final Project Report
Neural Network Approximation of Non-Linear Functions

Course: Mathematical Modeling and Simulation

23 November, 2016

Student Group: 13541/8

___________________ Christopher W. Blake

___________________ Elizabeth Sekerina

Professor

___________________ Rostov N.V

St. Petersburg
2016

 2

Contents
Introduction .. 3

Background ... 3

Neural Networks in Matlab .. 3

Hidden Layers .. 3

Neurons Per Layer & Training Data .. 4

Training Methods .. 4

Non-Linear Functions ... 4

Results ... 5

EQ 1: f(x) = x^2 .. 5

EQ 2: f(x) = tan(x) ... 6

EQ 3: f(x) = x^3 + 2*x^2 + exp(x) .. 7

Conclusion ... 8

References .. 8

Appendix 1 – Matlab Program Code .. 9

Script: Program.m .. 9

Class: FunctionFitting.m ... 10

 3

Introduction
Topic 6 is about the approximation of a non-linear function using a neural network. The usage
of neural networks for function approximation is well established, and it is also well known
that a neural network, if properly designed, can estimate any function to any degree of needed
accuracy.

The following functions will be modeled and approximated:

• f(x)= x^2
• f(x) = tan(x)
• f(x) = x^3 + 2*x^2 + exp(x)

Within the Matlab toolkit, there exists many options for creating, training, testing, and utilizing
a neural network. The previously mentioned functions are tested with two different neural
network types, with one and two layers of hidden neurons, and with four different training
methods. A comparison of these results is summarized, and the best configuration is
recommended. The Matlab program code for this testing can be found in Appendix 1.

Background
Neural Networks in Matlab
Two different built-in neural networks will be used to approximate the previously mentioned
functions. Both network types are briefly described below.

• feedforwardnet – Feedforward neural network. This is the most common network
type and is used as the basis for many other networks. The input values are
connected to the first layer. There are one or more hidden layers, each of which is
connected to each neuron in the neighboring layers. The final layer reduces to the
desired number of outputs.

• fitnet – Function fitting neural network. This is a specialized version of a feedforward
neural network.

Hidden Layers
Two layering schemes will be used. The two-layer network (one hidden layer) often referred
to as a “Perceptron”, and the three-layer network (two hidden layers) often referred to as a
“Multi-Layer Perceptron”. Images of both can be seen below. However, both networks will
additionally be modified to work with more neurons per layer.

Perceptron: Two-Layer Network (one hidden layer)

Multi-Layer Perceptron: Three-Layer Network (two hidden layers)

 4

Neurons Per Layer & Training Data
The number of neurons per layer is very important for the function approximation by a
neural network. Hence, the recommendation in Hagan et al. (1996), which helps to prevent
overtraining of a network, will be used. The equation for this method is described by the
below equation. n =number of inputs, M = number of hidden nodes (per layer). m = the
number of training samples.

(n + 2)M + 1 < m

As such, two different number of neurons will be used.

1. The first number of neurons will be low: 3. Hence the training samples will be 11.
2. The second number of neurons method will simply be three times this minimum

value. Hence 9 neurons and 29 training samples.

Training Methods
There are 5 different training methods recommended function approximation section of the
Matlab toolbox, all of which will be investigated. Below is a brief description of each.

1. train – Default normal method
2. trainlm – Levenberg-Marquardt backpropagation
3. trainbr – Bayesian regularization backpropagation
4. trainscg – Scaled conjugate gradient backpropagation
5. trainrp – Resilient backpropagation

Non-Linear Functions
Three non-linear functions will be considered for this analysis. Each is shown below.

Equation:
 f(x) = x^2

X Range:
 -10 to 10

Equation:
 f(x) = tan(x)

X Range:
 -1.5 to 1.5

Equation:
 f(x)= X^3 - 100*X^2 + exp(X) + 5000

X Range:
 0 to 10

 5

Results
EQ 1: f(x) = x^2

Description

1. Number of hidden layers - The additional layer generally reduced error in the
feedforward network, but increased error in the function fitting network.

2. Number of neurons / sample data – All cases are significantly more accurate.
3. Network type – The function fitting network in nearly all cases is more accurate.
4. Training method – If there is a low amount of sample data and a low number of

neurons, the “RP” method is the most accurate. However, with more sample data, all
methods are similar.

Two Layer (1 Hidden Layer) Three Layer (2 Hidden Layers)
Training Data Sample Size = 11
Neurons = 3

Training Data Sample Size = 11
Neurons = 3, 3

Training Data Sample Size = 29
Neurons = 9

Training Data Sample Size = 29
Neurons = 9, 9

 6

EQ 2: f(x) = tan(x)

Description

1. Number of hidden layers - The additional layer generally reduced error in the
feedforward network, but increased error in the function fitting network.

2. Number of neurons / sample data – All cases are significantly more accurate.
3. Network type – The feedforward network in nearly all cases is more accurate.
4. Training method – With a single hidden layer, all training networks performed

similarly. However, with two hidden layers, the “train” and “RP” methods had
significant errors.

Two Layer (1 Hidden Layer) Three Layer (2 Hidden Layers)
Training Data Sample Size = 11
Neurons = 3

Training Data Sample Size = 11
Neurons = 3, 3

Training Data Sample Size = 29
Neurons = 9

Training Data Sample Size = 29
Neurons = 9, 9

 7

EQ 3: f(x) = x^3 + 2*x^2 + exp(x)

Description

1. Number of hidden layers - The additional layer significantly increased the error.
2. Number of neurons / sample data – All cases are significantly more accurate.
3. Network type – With low sample data amounts, the function fitting network is more

accurate. However, with more training data, the t feedforward is more accurate.
4. Training method – With low sample data amounts, all methods had significant error

problems, especially in the later section (X> 8). However, with more sample data,
nearly all methods became significantly more accurate.

Two Layer (1 Hidden Layer) Three Layer (2 Hidden Layers)

Training Data Sample Size = 11
Neurons = 3

Training Data Sample Size = 11
Neurons = 3, 3

Training Data Sample Size = 29
Neurons = 9

Training Data Sample Size = 29
Neurons = 9, 9

 8

Conclusion
Three different functions have been approximated using various different neural networks,
configurations, and training methods. Below is a summary of the influence on each
parameter when configuring a neural network.

1. Number of hidden layers – In two of the three functions, the additional layer
generally reduced error in the feedforward network, but increased error in the
function fitting network.

2. Number of neurons / sample data – All cases are significantly more accurate.
3. Network type – The function fitting network in nearly all cases is more accurate.

However, with more training data the feedforward network may become more
accurate.

4. Training method – With low sample data and number of neurons, all methods have
error problems. However, the “RP” method is the most likely to remain accurate.
With more sample data, all methods are similar.

The best network configuration in all cases is the Function Fitting Neural Network with a
single hidden layer (9 neurons per layer). With this configuration, nearly all training methods
perform accurately.

References
1. Function Approximation and Nonlinear Regression (2016, November 24)

https://www.mathworks.com/help/nnet/function-approximation-and-nonlinear-
regression.html

2. Most, T.: Weimarer Optimierungs- und Stochastiktage 2.0 – 1./2. December 2005.
Approximation of complex nonlinear functions by means of neural networks

3. Hagan, M. T. ; Demuth, H. B. ; Beale, M.: Neural Network Design. PWS Publishing
Company, 1996

 9

Appendix 1 – Matlab Program Code
Script: Program.m
% Final Project:
% Neural Network Approximation of Non-Linear Functions
% Written By:
% Christopher Blake
% Elizabeth Sekerina
% Date:
% 24 November, 2016
clear; close all; clc;

%% General Configuration Properties
%Create same randomization seed point.
setdemorandstream(491218383)

%Change figure size
f1 = figure(1);
set(f1, 'Position', [50, 50, 750, 750]); % X from left, Y from bottom, Width, Height

%% Step 2: Create Neural Networks
% Function fitting neural network
 ShowInColum = 1;
 FunctionFitting.ShowNonLinearFunction(0.1, ShowInColum, 'Function Fitting Network'); %Show the
original non-linear function
 FunctionFitting.CreateAndShowNeuralNetwork(@fitnet, @train, 'k-', 1, ShowInColum); %solid
 FunctionFitting.CreateAndShowNeuralNetwork(@fitnet, @trainlm, 'k--', 1, ShowInColum); %dashed
 FunctionFitting.CreateAndShowNeuralNetwork(@fitnet, @trainbr, 'k:', 1, ShowInColum); %dotted
 FunctionFitting.CreateAndShowNeuralNetwork(@fitnet, @trainscg,'k-', 2, ShowInColum); %thick
solid
 FunctionFitting.CreateAndShowNeuralNetwork(@fitnet, @trainrp, 'k--', 2, ShowInColum); %thick
dasshed

% Feedforward neural network
 ShowInColum = 2;
 FunctionFitting.ShowNonLinearFunction(0.1, ShowInColum, 'Feedforward Network'); %Show the
original non-linear function
 FunctionFitting.CreateAndShowNeuralNetwork(@feedforwardnet, @train, 'k-', 1, ShowInColum);
 FunctionFitting.CreateAndShowNeuralNetwork(@feedforwardnet, @trainlm, 'k--', 1, ShowInColum);
 FunctionFitting.CreateAndShowNeuralNetwork(@feedforwardnet, @trainbr, 'k:', 1, ShowInColum);
 FunctionFitting.CreateAndShowNeuralNetwork(@feedforwardnet, @trainscg,'k-', 2, ShowInColum);
 FunctionFitting.CreateAndShowNeuralNetwork(@feedforwardnet, @trainrp, 'k--', 2, ShowInColum);

%% Adjust format of plots
FunctionFitting.FormatSubplots({'ACTUAL','TRAIN','LM','BR','SCG','RP'}, 'north', 7);

 10

Class: FunctionFitting.m

classdef FunctionFitting
 %UNTITLED2 Summary of this class goes here
 % Detailed explanation goes here

 properties (Constant)
 %Subcharts
 fRows = 2;
 fCols = 2;

 %Display Range
 Xmin = -10;
 Xmax = 10;
 AxisLimits = [0,10, -1,20000];

 %Neural Networks
 NumberHiddenNodes = [3, 3];
 TrainingSetSize = 11;
 MaxEpochs = 500;

 end

 methods (Static)
 %This where the non-linear function is located.
 function Y = NonLinearFunction(X)
 %Y = X.^2;
 %Y = tan(X);
 Y = X.^3 - 100*X.^2 + exp(X) + 5000;
 end

 %DO NOT EDIT BELOW HERE
 function [X, Y] = GetTrainingData()
 this = FunctionFitting;

 % Determine step size
 step = (this.Xmax - this.Xmin)/(this.TrainingSetSize-1);

 % Generate training Datas
 X = this.Xmin:step:this.Xmax;
 Y = this.NonLinearFunction(X);
 end
 function ShowNonLinearFunction(step, position, ChartTitle)
 this = FunctionFitting;

 %Generate Data
 X = this.Xmin:step:this.Xmax;
 Y = this.NonLinearFunction(X);

 %Show plot
 subplot(this.fRows,this.fCols,position)
 plot(X,Y,'k-', 'LineWidth', 3, 'Color', [0.7, 0.7, 0.7]);
 title(ChartTitle);

 %Adjust axis
 axis(this.AxisLimits);

 %Allow others to draw on top
 grid on; hold on;
 end
 function CreateAndShowNeuralNetwork(NetworkType, TrainingMethod, LineStyle, LineWidth,
Position)
 this = FunctionFitting;

 % Create the network
 net = NetworkType(this.NumberHiddenNodes);
 net.trainParam.epochs = this.MaxEpochs;

 %Train
 [X, Y] = this.GetTrainingData();
 [net, tr] = train(net,X,Y);

 % Get Results
 Y_net = net(X);

 %Display: Non-linear function approximation
 figure(1);
 subplot(this.fRows,this.fCols,Position)
 plot(X,Y_net,LineStyle,'LineWidth', LineWidth);
 xlabel('X');
 ylabel('f(X)');
 %legend('Y','Y_n');

 11

 %Display: MSE Error vs Epoch
% subplotPosition = ((2-1)*this.fCols) + Position; % Display in row 2
% subplot(this.fRows,this.fCols,subplotPosition);
% semilogy(tr.epoch, tr.tperf, LineStyle, 'LineWidth', LineWidth);
% xlabel('Epoch');
% ylabel('MSE');
% grid on; hold on;
%
 %Display Y - Y_net
 Y_actual = this.NonLinearFunction(X);
 subplotPosition = ((2-1)*this.fCols) + Position; % Display in row 2
 subplot(this.fRows,this.fCols,subplotPosition);
 plot(X, Y_actual - Y_net, LineStyle, 'LineWidth', LineWidth); %Actual vs approximation
 xlabel('X');
 ylabel('Error');
 grid on; hold on;

 end
 function FormatSubplots(LegendEntries, LegendLocation, FontSize)
 this = FunctionFitting;

 %Create Legend
 subplot(this.fRows,this.fCols,1);
 leg = legend(LegendEntries);
 set(leg, 'FontSize', FontSize);
 set(leg, 'Location',LegendLocation);
 for r = 1:this.fRows
 for c = 1:this.fCols
 position = ((r-1)*this.fCols) + c ;
 figure(1);
 subplot(this.fRows,this.fCols,position);
 set(gca,'Xcolor',[0.7 0.7 0.7]);
 set(gca,'Ycolor',[0.7 0.7 0.7]);
 Caxes = copyobj(gca,gcf);
 set(Caxes, 'color', 'none', 'xcolor', 'k', 'xgrid', 'off', 'ycolor','k',
'ygrid','off');
 %legend(LegendA,LegendB,LegendC);
 %set(legend, 'location', 'northeast')
 end
 end
 end
 end

end

