
St.	Petersburg	
2016	

	
	

Ministry	of	Education	and	Science	of	the	Russian	Federation	
Peter	the	Great	St.	Petersburg	State	Polytechnic	University	

Institute	of	Computer	Science	and	Control	Systems	
Control	Systems	and	Technology	Department	

	
	
	

Report	for	Laboratory	3	
Penalty	Functions	

Discipline:	Methods	of	Optimization	
6	December	2016	

	
	
	
	

	
Student	Group:	13541/8	

	
Christopher	W.	Blake	

	

Professor	
	

Rodionova	E.A.	
	
	
	 	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	2	of	7	
	

Contents	
Introduction	..	3	

Convexity	...	3	

Penalty	Function	Method	..	4	

Results	...	5	

Minimization	Point	1	...	5	

Minimization	Point	2	...	6	

Conclusion	...	6	

Appendix	A:	C#	Program	...	7	

Main	..	7	

	
	 	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	3	of	7	
	

Introduction	
The	following	objective	function	is	provided,	and	a	search	algorithm	is	used	for	locating	the	
point	 of	 minimization.	 However,	 this	 objective	 function	 is	 also	 constrained	 to	 a	 certain	
allowable	 answer	 range,	 by	means	 of	 the	 following	 constraint	 inequalities.	 Hence,	 a	 new	
modified	objective	function	combined	with	penalty	functions	is	developed.	To	determine	this	
minimization	point,	a	previously	develop	minimization	method	of	gradient	descent	is	utilized.		
	
Objective	Function:	

𝑓 𝑥#, 𝑥% = 	 1 − 𝑥# % − 10 𝑥% − 𝑥#% % + 𝑥#% − 2𝑥#𝑥% + 𝑒(/01/02) 	
	

Constraints:	
𝑥#% + 𝑥%% ≤ 16	

	
𝑥% − 𝑥# % + 𝑥# ≤ 6	

	
𝑥# + 𝑥% ≥ 2	

Convexity	
Before	 search	 methods	 were	 be	 performed,	 the	
unconstrained	 objective	 function	 was	 graphically	
and	analytically	tested	for	convexity.	It	can	be	seen	
that	 the	 objective	 function	 is	 not	 convex.	 This	 is	
graphically	clear	in	the	right	image.	Additionally	the	
second	gradient	for	both	the	x1	and	x2		variables	is	
not	always	positive.	This,	by	definition,	states	that	
the	objective	function	is	not	convex.	
	
First	Order	Gradient	
Respect	to	x1	

∇𝑓 𝑥#,𝑥% = 𝑒/01/02 − 10 𝑥% − 𝑥#% % + 𝑥#% − 2𝑥%𝑥# + 1 − 𝑥# %	
	
Respect	to	x2	

∇𝑓 𝑥#,𝑥% = 𝑒/01/02 − 20 𝑥% − 𝑥#% − 2𝑥#	
	
Second	Order	Gradient	
Respect	to	x1	

∇%𝑓 𝑥#,𝑥% = 𝑒/01/02 − 80𝑥#% + 40 𝑥% − 𝑥#% + 4	
	
Respect	to	x2	

∇%𝑓 𝑥#,𝑥% = 𝑒/01/02 − 20	
	
	

𝛁𝟐𝒇 𝒙 	≯ 𝟎				therefore			𝒇 𝒙 			is	not	convex	
	

	
	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	4	of	7	
	

	
The	constrained	objective	function	was	
again	graphically	tested.	However,	this	
also	 shows	 that	 the	 constrained	
objective	function	is	not	convex.	
	
There	is	clearly	a	minimum	in	the	area	
of	position	x≈(4,3)	as	well	as	a	
minimum	in	the	area	of	position	
x≈(0.5,3).	
	

Penalty	Function	Method	
Description	
A	second	order	penalty	function	is	selected	to	control	the	range	of	possible	results.	This	is	to	
ensure	a	second	derivative.	This	penalty	function	is	combined	with	the	constraints	and	added	
to	the	original	objective	function.	By	doing	so,	when	a	combination	of	x1	and	x2	is	selected	
outside	of	the	constrained	area,	the	value	will	be	unrealistically	increased,	guaranteeing	the	
position	not	to	be	a	minimum.	
	

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 𝑡 = 0, 𝑡 < 0
100000 ∗ 𝑡%, 𝑡 ≥ 0	

	
Below	are	the	constraints	and	how	each	graphically	reduces	the	target	area.	
	

𝒙𝟏𝟐 + 𝒙𝟐𝟐 ≤ 𝟏𝟔	
	

	

𝒙𝟐 − 𝒙𝟏 𝟐 + 𝒙𝟏 ≤ 𝟔	
	

	

𝒙𝟏 + 𝒙𝟐 ≥ 𝟐	
	

	
	
Combined	Objective	
The	above	constraints	are	now	added	to	the	original	objective	function.	
	

𝑓 𝑥#, 𝑥% = 	 1 − 𝑥# % − 10 𝑥% − 𝑥#% % + 𝑥#% − 2𝑥#𝑥% + 𝑒 /01/02 	

	

+	𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥#% + 𝑥%% − 16)		
	
+	𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥% − 𝑥# % + 𝑥# − 6)		
	
+	𝑝𝑒𝑛𝑎𝑙𝑡𝑦(2 − 𝑥# − 𝑥%)		

	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	5	of	7	
	

Results	
The	 results	 for	 two	 different	minimization	 points	 are	 shown.	 This	 is	 required	 because,	 as	
earlier	proven,	the	function	is	not	convex.	A	graphical	depiction	of	the	steps	taken	during	a	
gradient	descent,	as	well	as	a	table	performing	the	result	for	different	accuracy	requirements	
are	shown	below.		
	
Minimization	Point	1	
A	start	point	was	picked	slightly	on	the	low	side	of	the	main	hill.	This	 is	to	ensure	that	the	
minimization	point	goes	toward	the	global	minimum.	It	can	be	seen	that	a	standard	gradient	
descent	algorithm	was	able	to	locate	this	minimization	point	in	3	steps.	
	

	
	

Accuracy	 X1	 X2	 f(x)	
Calcs	
f(x)	

Calcs	
f'(x)	

Total	
Calcs	

0.1	 3.32	 1.75	 -851.69	 25	 3	 28	
0.01	 3.348	 1.718	 -851.167	 40	 3	 43	
0.001	 3.3465	 1.7180	 -893.6656	 55	 3	 58	

	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	6	of	7	
	

Minimization	Point	2	
A	start	point	was	picked	slightly	on	the	low	side	of	the	smaller	hill.	This	is	to	ensure	that	the	
minimization	point	goes	toward	the	local	minimum.	It	can	be	seen	that	a	standard	gradient	
descent	algorithm	was	able	to	locate	this	minimization	point	in	just	2	steps.	
	

	
	

Accuracy	 X1	 X2	 f(x)	
Calcs	
f(x)	

Calcs	
f'(x)	

Total	
Calcs	

0.1	 0.15	 2.58	 1100.11	 17	 2	 19	
0.01	 0.131	 2.555	 5.937	 40	 3	 43	
0.001	 0.1285	 2.5519	 -61.5846	 55	 3	 58	

	
	

Conclusion	
From	the	results,	 it	can	be	seen	that	the	objective	function	has	two	minimization	points,	a	
global	minimum	and	a	 local	minimum,	when	restricted	by	a	series	of	constraints.	The	local	
minimum	is	at	position	(0.129,	2.55)	and	the	global	minimum	is	at	position	(3.347,	1.718).	
	
Additionally	 adding	 constraints	 to	 the	 system	 was	 easily	 achievable	 by	 use	 of	 penalty	
functions.	By	use	of	 these	penalty	 functions,	disallowed	values	 for	 inputs	 x1	and	x2	 cause	
drastic	increases	in	the	value	of	f(x),	thereby	effectively	constraining	the	possible	result	area.		

	
	 	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	7	of	7	
	

Appendix	A:	C#	Program	
Main	
static void Main(string[] args)
 {
 //Required accuracy values
 List<double> epsValues = new List<double> { 0.1, 0.01, 0.001 }; //accuracy

 //Functions
 Func<DV, D> objFunc = delegate (DV x)
 {
 D x1 = x[0];
 D x2 = x[1];

 //(1-x1)^2 - 10(x2-x1^2)^2 + x1^2 - 2x1*x2 + exp(-x1-x2)
 return AD.Pow(1.0 - x1, 2) //(1-x1)^2
 - 10*AD.Pow(x2 - AD.Pow(x1, 2), 2) // - 10(x2-x1^2)^2
 + AD.Pow(x1, 2) // + x1^2
 - 2*x1*x2 // - 2x1*x2
 + AD.Exp(-x1 - x2); //exp(-x1 - x2)
 };
 Func<D, D> penalty = delegate (D t)
 {
 if (t < 0)
 return 0;
 else
 {
 return 1000000 * AD.Pow(t, 2);
 }
 };
 Func<DV,D> objFunc_penalized = delegate (DV x)
 {
 D x1 = x[0];
 D x2 = x[1];

 //Constraints
 //Example: x >= 1 -----------------------> 1 - x <= 0
 //x1^2 + x2^2 <= 16 ---------> x1^2 + x2^2 - 16 <= 0
 //(x2 - x1)^2 + x1 <= 6 ---------> (x2 - x1) ^ 2 + x1 - 6 <= 0
 //x1 + x2 >= 2 ---------> 2 - x1 - x2 <= 0

 //Combine objective function and penalty functions
 return 0
 + objFunc(x)
 + penalty(AD.Pow(x1,2) + AD.Pow(x2,2) - 16)
 + penalty(AD.Pow(x2 - x1, 2) + x1 - 6)
 + penalty(2 - x1 - x2)
 ;
 };

 //Get results
 int calcsF;
 int calcsGradient;
 int calcsHessian;
 DV[] xLocations = null;
 double[] fx = null;

 epsValues = new List<double> {0.1, 0.01, 0.001}; //accuracy
 #region 1.) Penalty Function, First Order, One-Dimensional Method

 //Show the table header
 Console.WriteLine("----- Gradient Search, First Order, One-Dimensional Method -----");
 Console.WriteLine(" eps X1 X2 f(x) Calcs F Calcs Gr");
 foreach (double eps in epsValues)
 {
 //Perform calculation
 //DV startPoint = new DV(new D[] { 2, 2 });
 DV startPoint = new DV(new D[] { 1, 2 });
 var xMin = Optimization.GradientDescent.FirstOrder_OneDimensionalMethod(objFunc_penalized,
startPoint, eps, out calcsF, out calcsGradient, out xLocations, out fx);

 //determine number of decimal places to show
 int dp = BitConverter.GetBytes(decimal.GetBits((decimal)eps)[3])[2] + 1;

 //Display result on console
 if (xMin != null)
 Console.WriteLine("{0,10}{1,10:F" + dp + "}{2,10:F" + dp + "}{3,12:F" + dp + "}{4,10}{5,10}", eps,
(double)xMin[0], (double)xMin[1], (double)objFunc_penalized(xMin), calcsF, calcsGradient);
 }

 #endregion

 Console.ReadKey();
 }

