
St.	Petersburg	
2016	

	
	

Ministry	of	Education	and	Science	of	the	Russian	Federation	
Peter	the	Great	St.	Petersburg	State	Polytechnic	University	

Institute	of	Computer	Science	and	Control	Systems	
Control	Systems	and	Technology	Department	

	
	
	

Report	for	Laboratory	2	
Gradient	Descent	Minimization	Methods	
Discipline:	Methods	of	Optimization	

6	December	2016	
	
	
	
	

	
Student	Group:	13541/8	

	
Christopher	W.	Blake	

	

Professor	
	

Rodionova	E.A.	
	
	
	 	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	2	of	14	
		

Contents	
Introduction	..	3	

Convexity	...	3	

Method	Descriptions	...	3	

First	Order	Gradient	Descent	..	3	

Second-Order	Gradient	Descent	...	4	

Results	...	6	

First-Order	Gradient	Descent	..	6	

Second-Order	Gradient	Descent	...	7	

Conclusion	...	8	

Appendix	A:	C#	Program	...	9	

Main	..	9	

GradientDescent_FirstOrder_OneDimensionalMethod	...	11	

GradientDescent_FirstOrder_DivisionMethod	...	12	

GradientDescent_SecondOrder_Traditional	...	13	

GradientDescent_SecondOrder_Dampened	...	14	

	
	 	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	3	of	14	
		

Introduction	
The	 following	 objective	 function	 is	 provided,	 and	 a	 search	 algorithm	 should	 be	 used	 for	
locating	the	point	of	minimization.	To	determine	this	minimization	point,	both	first-order	and	
second-order	 gradient	 descent	 versions	 are	 utilized	 and	 compared.	 Additionally,	 different	
methods	are	used	 to	analyze	 the	 step	 size.	These	 include	golden	 ratio	 search	and	division	
search	for	the	first-order	gradient	descent,	and	traditional	newton’s	method	and	dampened	
newton’s	method	for	the	second-order	gradient	descent.	
	
Objective	Function:	

𝑓 𝑥#, 𝑥% = 	𝑥#% + 𝑥%% + 𝑒*+
+ − 𝑥# + 2𝑥% 	

Methods	
1. First-Order	Gradient	Descent	

a. Golden	Ratio	Search	
b. Division	Search		

2. Second-Order	Gradient	Descent	
a. Traditional	Newton’s	Method	
b. Dampened	Newton’s	Method	(Division	Method)		

Convexity	
Before	 such	 search	methods	 can	be	performed,	 the	objective	 function	must	be	 tested	 for	
convexity.	The	simplest	method	for	a	complex	equation	such	as	this	is	to	check	the	first	and	
second	order	gradient.	As	seen	below,	the	second	order	gradient	below	is	always	positive,	
hence	the	objective	function	is	convex.	
	
	 Respect	to	𝑥#	 Respect	to	𝑥%	

First-Order	Gradient:	 ∇𝑓 𝑥# 		= 2𝑥 − 1		 ∇𝑓 𝑥% 		= 2𝑥% + 2𝑥%𝑒*+
+ 		

Second-Order	Gradient:	 ∇%𝑓 𝑥# = 2		 ∇%𝑓 𝑥% = 2 + 4𝑥%%𝑒*+
+ + 2𝑒*++ 		

	
∇%𝑓 𝑥 	≻ 0				therefore			𝑓 𝑥 			is	convex	

Method	Descriptions	
First	Order	Gradient	Descent	
Description	
The	gradient	of	a	multi-variable	objective	function	is	calculated.	This	gradient	is	used	as	the	
direction	to	be	minimized.	Next,	the	minimization	point	 in	this	direction	is	calculated	using	
either	the	golden	radio	search	or	the	division	search	method.	At	this	new	position,	the	next	
direction	is	determined	and	the	process	is	repeated.	This	process	is	repeated	until	the	gradient	
is	smaller	than	the	required	accuracy.		
	
Program	Outline	

1.) Specify	inputs	
a. f(x)	–	Objective	Function	
b. eps	–	Accuracy	Value	

2.) Calculate	f(x)	at	a	first	assumed	point.	
3.) Determine	the	gradient:	∇f(x).	
4.) Compute	the	scaling	factor	(α)	that	reaches	the	minimum	point	in	the	gradient	

direction.	This	is	performed	using	one	of	the	below	methods.	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	4	of	14	
		

a. Golden	Ratio	Search	
i. Build	a	temporary	objective	function	using	the	current	position	(Xn)		

and	the	gradient	∇f(x).	
1. Xn+1	=	Xn	+	α∇f(x)	

ii. Use	the	golden	ratio	search	to	determine	the	scaling	factor	(α)	that	
produces	the	minimization	point.	

b. Division	Method	
i. Begin	with	a	default	scaling	factor	(α)	equal	to	0.8	of	the	previous	

scaling	factor	(α).	Establish	a	temporary	scaling	factor	(δ)	that	is	equal	
to	the	current	scaling	factor	(α).	

ii. Compute	the	new	position		
1. Xn+1	=	Xn	+	δ∇f(x)	

iii. Check	if	f(Xn+1)	is	lower	than	f(Xn).	If	it	is	not,	divide	the	temporary	
scaling	factor	(δ)	by	2	and	repeat.	

5.) Move	to	the	new	position	using	the	gradient	∇f(x)	and	scaling	factor	(α).	
a. Xn+1	=	Xn	+	α∇f(x).	

6.) Check	if	the	gradient	is	smaller	than	the	accuracy	(eps.)	If	so,	end	the	search	and	
continue	to	step	7.	If	not,	repeat	steps	2	through	5.	

7.) Return	the	results	
a. Minimization	Point:		 x	
b. Final	calculations:		 f(x)	
c. Number	of	calculations	of	f(x)	required	to	reach	the	answer.		
d. Number	of	calculations	of	∇f(x)	required	to	reach	the	answer.		

	
Second-Order	Gradient	Descent	
Description	
The	gradient	and	second	gradient	of	a	multi-variable	objective	function	are	calculated.	These	
gradients	are	used	in	combination	to	determine	the	minimization	direction	and	distance.	Two	
versions	of	this	method	are	performed.	(See	derivation	below.)	
	

1. Full	Step	–	(Traditional	Newtons	Method)	An	alpha	value	of	1	is	used.	No	additional	
computations	for	step	are	required.	

2. Division	Method	 –	 (Dampened	Newton’s	Method)	 –	A	dampening	 factor	 (alpha)	 is	
applied,	verifying	that	the	full	step	does	not	overshoot.	
	

At	 this	 new	 position,	 the	 next	 direction	 and	 distance	 are	 determined	 and	 the	 process	 is	
repeated.	This	process	is	repeated	until	the	gradient	is	smaller	than	the	required	accuracy.		
	
Derivation	

1.) Equation	for	next	f(x)	–	The	location	of	the	minimization	point	can	be	written	as	such:	
	
	 	 𝑓 𝑥[𝑖 + 1] = 	𝑓 𝑥 𝑖 +	𝑓8 𝑥 𝑖 ∆𝑥 + #

%
𝑓′′(𝑥 𝑖)∆𝑥%	

	
2.) First	derivative	-	The	derivative	of	this	equation	is	set	equal	to	zero	to	find	the	point	

of	minimization.	
	

0 = 𝑓8 𝑥 𝑖 + 1 = 𝑓8 𝑥 𝑖 + 𝑓′′(𝑥 𝑖)∆𝑥	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	5	of	14	
		

	
3.) Distance	to	min	point	–	The	first	derivative	is	rearranged	to	determine	the	step	(∆𝑥).	

∆𝑥 = 	
−𝑓8(𝑥 𝑖)
𝑓′′(𝑥 𝑖) 	

	
4.) Minimization	point	–	This	distance	is	combined	with	the	current	position	to	

determine	the	minimization	point.	

𝑥[𝑖 + 1] = 𝑥 𝑛 +	
−𝑓8(𝑥 𝑖)
𝑓′′(𝑥 𝑖) 		

	
Program	Outline	

1.) Specify	inputs	
a. f(x)	–	Objective	Function	
b. eps	–	Accuracy	Value	

2.) Calculate	f(x)	at	a	first	assumed	point.	
3.) Determine	the	gradient,	∇f(x),	and	second	gradient,	∇2f(x).	
4.) Compute	the	full	step	for	traditional	newtons	method	(full	step)	scaling	factor	(α)	

directions	that	reaches	the	minimum.	
a. Compute	the	new	position		

i. fullStep	=	-f’(x1)	/	f’’(x1)	
ii. α	=	1	

5.) If	using	the	dampened	newtons	method,	determine	the	scaling	factor	(α)	directions	
that	reaches	the	minimum.	If	not,	skip	to	step	6.	The	division	method	is	used.	

a. Begin	with	a	default	scaling	factor	(α)	equal	to	0.8	of	the	previous	scaling	
factor	(α).	Establish	a	temporary	scaling	factor	(δ)	that	is	equal	to	the	current	
scaling	factor	(α).	

b. Compute	the	new	position		
i. Xn+1	=	Xn	+	δ ∗ fullStep	

c. Check	if	f(Xn+1)	is	lower	than	f(Xn).	If	it	is	not,	divide	the	temporary	scaling	
factor	(δ)	by	2	and	repeat.	

6.) Move	to	the	new	position	using	step	size	(α).	
a. Xn+1	=	Xn	+	α ∗ fullStep	

7.) Check	if	the	gradient	is	smaller	than	the	accuracy	(eps.)	If	so,	end	the	search	and	
continue	to	step	7.	If	not,	repeat	steps	2	through	5.	

8.) Return	the	results	
a. Minimization	Point:	[x1,	x2]	
b. Final	calculations:	f(x1,	x2)	
c. Number	of	calculations	of	f(x)	required	to	reach	the	answer.		
d. Number	of	calculations	of	∇f(x)	required	to	reach	the	answer	
e. Number	of	calculations	of	∇2f(x)	required	to	reach	the	answer.	

	
	 	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	6	of	14	
		

Results	
The	results	for	each	method	is	shown	in	the	following	sections.	Each	method	was	performed	
with	different	accuracy	of	0.1,	0.01,	and	0.001.	The	total	number	of	required	calculations	of	
f(x),	f’(x),	and	f’’(x)	to	find	the	solution	is	used	as	the	main	comparison.		
	
First-Order	Gradient	Descent	
As	previously	 stated,	 the	 first-order	 gradient	 descent	method	was	 analyzed	with	both	 the	
division	and	the	golden	search	method	for	determining	the	step.	It	can	be	seen	in	the	below	
charts	 that	 the	 division	 method	 outperforms	 the	 golden	 search	 method	 for	 all	 accuracy	
requirements.	Additionally,	the	number	of	required	calculations	is	not	drastically	affected.	
	

	
	

Method	 Accuracy	 X1	 X2	 f(x)	
Calcs	
f(x)	

Calcs	
f'(x)	

Calcs	
f''(x)	

Total	
Calcs	

First	Order	–	Division	 0.1	 0.5	 -0.45	 0.28	 12	 7	 	 19	
First	Order	–	Division	 0.01	 0.50	 -0.450	 0.277	 13	 8	 	 21	
First	Order	–	Division	 0.001	 0.4997	 -0.4497	 0.2770	 14	 9	 	 23	
First	Order	-	Golden	Search	 0.1	 0.51	 -0.48	 0.28	 41	 5	 	 46	
First	Order	-	Golden	Search	 0.01	 0.502	 -0.450	 0.277	 92	 7	 	 99	
First	Order	-	Golden	Search	 0.001	 0.5001	 -0.4495	 0.2770	 181	 10	 	 191	
	
	 	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	7	of	14	
		

Second-Order	Gradient	Descent	
The	second-order	gradient	descent	method	was	calculated	using	only	the	division	method.	It	
can	be	seen	below	that	the	total	calculations	was	also	not	drastically	affect	by	the	increased	
accuracy.	
	

	
	

Method	 Accuracy	 X1	 X2	 f(x)	
Calcs	
f(x)	

Calcs	
f'(x)	

Calcs	
f''(x)	

Total	
Calcs	

Second	Order	–	Division	 0.1	 0.49	 -0.44	 0.28	 5	 4	 4	 13	
Second	Order	–	Division	 0.01	 0.497	 -0.448	 0.277	 9	 8	 8	 25	
Second	Order	–	Division	 0.001	 0.4990	 -0.4497	 0.2770	 15	 14	 14	 43	
Second	Order	–	Full	Step	 0.1	 0.50	 -0.45	 0.28	 3	 3	 4	 9	
Second	Order	–	Full	Step	 0.01	 0.500	 -0.450	 0.277	 3	 3	 4	 9	
Second	Order	–	Full	Step	 0.001	 0.5000	 -0.4496	 0.2770	 4	 4	 4	 12	

	
	 	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	8	of	14	
		

Conclusion	
From	 the	 results,	 it	 can	 be	 seen	 that	 the	 minimum	 point	 of	 the	 objective	 function	 is	 at	
f(0.5,	-0.45)	=	0.277.	
	
Conclusion	1:	From	the	various	methods,	the	most	effective	solution	is	the	full	step	second	
order	gradient	descent	method.	This	method,	required	the	least	number	of	calculations	of	f(x),	
f’(x),	and	f’’(x)	 in	order	to	find	the	solution.	However,	 it	does	require	that	a	function	to	be	
second-order	differentiable.	
	
Conclusion	2:	Looking	only	at	the	first-order	gradient	descent	data,	 it	can	be	seen	that	the	
division	method	significantly	outperforms	the	golden	ratio	search.	This	is	likely	because	the	
golden	ratio	search	is	more	accurate	per	cycle	than	required.	
	
Below	is	a	chart	and	table	comparing	the	various	methods.	The	highlighted	value	is	the	cell	
with	the	least	number	of	calculations	for	a	given	accuracy	requirement.	
	

	
	

Method	 Accuracy	 X1	 X2	 f(x)	 Calcs	
f(x)	

Calcs	
f'(x)	

Calcs	
f''(x)	

Total	
Calcs	

First	Order	-	Golden	Search	 0.1	 0.51	 -0.48	 0.28	 41	 5	 	 46	
First	Order	-	Division	 0.1	 0.50	 -0.45	 0.28	 12	 7	 	 19	
Second	Order	-	Full	Step	 0.1	 0.50	 -0.45	 0.28	 3	 3	 3	 9	
Second	Order	-	Division	 0.1	 0.49	 -0.44	 0.28	 5	 4	 4	 13	
First	Order	-	Golden	Search	 0.01	 0.502	 -0.450	 0.277	 92	 7	 	 99	
First	Order	-	Division	 0.01	 0.500	 -0.450	 0.277	 13	 8	 	 21	
Second	Order	-	Full	Step	 0.01	 0.500	 -0.450	 0.277	 3	 3	 3	 9	
Second	Order	-	Division	 0.01	 0.497	 -0.448	 0.277	 9	 8	 8	 25	
First	Order	-	Golden	Search	 0.001	 0.5001	 -0.4494	 0.2770	 181	 10	 	 191	
First	Order	-	Division	 0.001	 0.4997	 -0.4497	 0.2770	 14	 9	 	 23	
Second	Order	-	Full	Step	 0.001	 0.5000	 -0.4496	 0.2770	 4	 4	 4	 12	
Second	Order	-	Division	 0.001	 0.4990	 -0.4497	 0.2770	 15	 14	 14	 43	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	9	of	14	
		

Appendix	A:	C#	Program	
Main	
 static void Main(string[] args)
 {
 #region Intro
 Console.WriteLine(@"
///////////////////////////////////////
Task: Lab 2 - Gradient Descent
Written By: Christopher W. Blake
Date: 22 Nov. 2016
///////////////////////////////////////
Description:
Creates 2 different seach algorithms for finding
the minimum of a given function f(x) in a range. It then tests
these results and prints them to the console.

1. First-order gradient descent method.
 (one – dimensional minimization method for choosing the step)

2. Second-order gradient descent method
 (division method for choosing the step)

Verification: f(0.5, -0.44963) = 0.27696
///////////////////////////////////////
");
 #endregion

 //Required accuracy values
 List<double> epsValues = new List<double> { 0.1, 0.01, 0.001 }; //accuracy

 //Objective function
 Func<DV,D> f = delegate (DV x)
 {
 D x1 = x[0];
 D x2 = x[1];
 return x1 * x1 + x2 * x2 + AD.Exp(x2 * x2) - x1 + 2 * x2;
 //return AD.Pow(x1-7, 2) + AD.Pow(x2-3, 2);
 };

 #region 1.) First Order, One-Dimensional Method
 //Show the table header
 Console.WriteLine("----- Gradient Search, First Order, One-Dimensional Method -----");
 Console.WriteLine(" eps X1 X2 f(x) Calcs F Calcs Gr");
 foreach (double eps in epsValues)
 {
 //Get solution
 int calcsF;
 int calcsGradient;
 DV startPoint = new DV(new D[] {0,0});
 DV xMin = Optimization.GradientDescent.FirstOrder_OneDimensionalMethod(f, startPoint,
eps, out calcsF, out calcsGradient);

 //determine number of decimal places to show
 int dp = BitConverter.GetBytes(decimal.GetBits((decimal)eps)[3])[2] + 1;

 //Show on console
 Console.WriteLine("{0,8}{1,8:F"+dp+"}{2,8:F" + dp + "}{3,8:F" + dp + "}{4,8}{5,8}",
eps, (double)xMin[0], (double) xMin[1], (double) f(xMin), calcsF, calcsGradient);

 }
 #endregion

 #region 2.) First Order, Division Method
 //Show the table header
 Console.WriteLine();
 Console.WriteLine("----- Gradient Search, First Order, Division Method -----");
 Console.WriteLine(" eps X1 X2 f(x) Calcs F Calcs dF");
 foreach (double eps in epsValues)
 {
 //Get solution
 int calcsF;
 int calcsGradient;
 DV startPoint = new DV(new D[] { 0, 0 });

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	10	of	14	
	

 DV xMin = Optimization.GradientDescent.FirstOrder_DivisionMethod(f, startPoint, eps,
out calcsF, out calcsGradient);

 //determine number of decimal places to show
 int dp = BitConverter.GetBytes(decimal.GetBits((decimal)eps)[3])[2] + 1;

 //Show on console
 Console.WriteLine("{0,8}{1,8:F" + dp + "}{2,8:F" + dp + "}{3,8:F" + dp + "}{4,8}{5,8}",
eps, (double)xMin[0], (double)xMin[1], (double)f(xMin), calcsF, calcsGradient);

 }
 #endregion

 #region 3.) Second Order - Newtons Method, FullStep
 //Show the table header
 Console.WriteLine();
 Console.WriteLine("----- Gradient Search, Second Order, FullStep -----");
 Console.WriteLine(" eps X1 X2 f(x) Calcs F Calcs Gr Calcs Hess");

 //Show Results for each accuracy
 foreach (double eps in epsValues)
 {
 //Get solution
 int calcsF;
 int calcsGradient;
 int calcsHessian;
 DV startPoint = new DV(new D[] {0, 0});
 DV xMin = Optimization.GradientDescent.SecondOrder_FullStep(f, startPoint, eps, out
calcsF, out calcsGradient, out calcsHessian);

 //determine number of decimal places to show
 int dp = BitConverter.GetBytes(decimal.GetBits((decimal)eps)[3])[2] + 1;

 //Show on console
 Console.WriteLine("{0,8}{1,8:F" + dp + "}{2,8:F" + dp + "}{3,8:F" + dp +
"}{4,8}{5,8}{6,8}", eps, (double)xMin[0], (double)xMin[1], (double)f(xMin), calcsF, calcsGradient,
calcsHessian);

 }
 #endregion

 #region 4.) Second Order - Newtons Method, Division Method
 //Show the table header
 Console.WriteLine();
 Console.WriteLine("----- Gradient Search, Second Order, Division Method -----");
 Console.WriteLine(" eps X1 X2 f(x) Calcs F Calcs Gr Calcs Hess");

 //Show Results for each accuracy
 foreach (double eps in epsValues)
 {
 //Get solution
 int calcsF;
 int calcsGradient;
 int calcsHessian;
 DV startPoint = new DV(new D[] { 0, 0 });
 DV xMin = Optimization.GradientDescent.SecondOrder_DivisionMethod(f, startPoint, eps,
out calcsF, out calcsGradient, out calcsHessian);

 //determine number of decimal places to show
 int dp = BitConverter.GetBytes(decimal.GetBits((decimal)eps)[3])[2] + 1;

 //Show on console
 Console.WriteLine("{0,8}{1,8:F" + dp + "}{2,8:F" + dp + "}{3,8:F" + dp +
"}{4,8}{5,8}{6,8}", eps, (double)xMin[0], (double)xMin[1], (double)f(xMin), calcsF, calcsGradient,
calcsHessian);

 }
 #endregion

 //Wait for use to click something to exit
 Console.ReadKey();

 }	

	 	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	11	of	14	
	

GradientDescent_FirstOrder_OneDimensionalMethod	
 public static DV FirstOrder_OneDimensionalMethod(Func<DV, D> f, DV startPoint, double accuracy,
out int calcsF, out int calcsGradient, out DV[] x, out double[] fx)
 {
 //Counters
 calcsF = 0; //Count how many times the objective function was used.
 calcsGradient = 0; //Count how many times the gradient was calculated.

 //Define our X vector
 int maxIterations = 1000;
 x = new DV[maxIterations];
 fx = new double[maxIterations];

 //Pick an initial guess for x
 int i = 0;
 x[i] = startPoint;
 fx[i] = f(x[i]); calcsF++;

 //Loop through gradient steps until min points are found, recompute gradient and repeat.
 while (true)
 {
 //Compute next step, using previous step
 i++;

 //Return failed results
 if (double.IsNaN(x[i-1][0]) || double.IsNaN(x[i - 1][1]) || (i == maxIterations))
 {
 x = x.Take(i).ToArray();
 fx = fx.Take(i).ToArray();
 return null;
 }

 //Step 1 - Determine the gradient
 DV gradient = 0-AD.Grad(f, x[i - 1]); calcsGradient++;
 DV direction = gradient / Math.Sqrt(AD.Pow(gradient[0], 2) + AD.Pow(gradient[1], 2));
//Normalize Gradient

 //Step 2 - Build an objective function using the gradient.
 // This objective function moves downward in the direction of the gradient.
 // It uses golden ratio optimization to find the minimum point in this direction
 DV xPrev = x[i - 1];
 Func<D, D> objFStep = delegate (D alpha)
 {
 DV xNew = xPrev + (alpha * direction);
 return f(xNew);
 };
 var stepSearchResults = UnimodalMinimization.goldenRatioSearch(objFStep, 0, 1,
accuracy); //alpha can only be between 0 and 1
 double step = (stepSearchResults.a + stepSearchResults.b) / 2; //The step required to
get to the bottom
 calcsF += stepSearchResults.CalculationsUntilAnswer; //The number of calculations of f
that were required.

 //Step 3 - Move to the discovered minimum point
 x[i] = x[i - 1] + (step * direction);
 fx[i] = f(x[i]); calcsF++;

 //Step 4 - Check if accuracy has been met. If so, then end.
 double magGradient = Math.Sqrt(AD.Pow(gradient[0], 2) + AD.Pow(gradient[1], 2));
 if (magGradient < accuracy)
 break;
 }

 //Return the minimization point.
 x = x.Take(i+1).ToArray();
 fx = fx.Take(i+1).ToArray();
 return x[i];
 }

	
	 	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	12	of	14	
	

GradientDescent_FirstOrder_DivisionMethod	
public static DV FirstOrder_DivisionMethod(Func<DV, D> f, DV startPoint, double accuracy, out int
calcsF, out int calcsGradient, out DV[] x, out double[] fx)
 {
 //Counters
 calcsF = 0; //Count how many times the objective function was used.
 calcsGradient = 0; //Count how many times the gradient was calculated.

 //Define our X vector
 int maxIterations = 10000;
 x = new DV[maxIterations];
 fx = new double[maxIterations];

 //Pick an initial guess for x
 int i = 0;
 x[0] = startPoint;
 fx[0] = f(x[0]); calcsF++;

 //Loop through gradient steps until min points are found, recompute gradient and repeat.
 double alpha = 1;
 while (true)
 {
 //Compute next step, using previous step
 i++;

 //Step 1 - Determine the gradient
 DV gradient = AD.Grad(f, x[i - 1]); calcsGradient++;

 //Step 2 - Division method, to compute the new x[i] and fx[i]
 DV xPrev = x[i - 1];
 Func<D, D> objFAlpha = delegate (D a)
 {
 DV xNext = xPrev - (a * gradient);
 return f(xNext);
 };
 alpha = alpha * 0.8;
 double beta = UnimodalMinimization.DivisionSearch(objFAlpha, fx[i - 1], alpha, out
fx[i], ref calcsF);
 x[i] = x[i - 1] - (beta * gradient);

 //Step 3 - Check if accuracy has been met. If so, then end.
 double magGradient = Math.Sqrt(AD.Pow(gradient[0], 2) + AD.Pow(gradient[1], 2));
 if (magGradient < accuracy)
 break;
 }

 //Return the minimization point.
 x = x.Take(i + 1).ToArray();
 fx = fx.Take(i + 1).ToArray();
 return x[i];
 }

	
	 	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	13	of	14	
	

GradientDescent_SecondOrder_Traditional	
public static DV SecondOrder_FullStep(Func<DV, D> f, DV startPoint, double accuracy, out int calcsF,
out int calcsGradient, out int calcsHessian, out DV[] x, out double[] fx)
 {
 //Counters
 calcsF = 0; //Count how many times the objective function was used.
 calcsGradient = 0; //Count how many times the gradient was calculated.
 calcsHessian = 0; //Count how many times the second gradient was calculated.

 //Define our X vector
 int maxIterations = 10000;
 x = new DV[maxIterations];
 fx = new double[maxIterations];

 //Pick an initial guess for x
 int i = 0;
 x[0] = startPoint;

 //Loop through gradient steps until zeros are found
 while (true)
 {
 //Compute next step, using previous step
 i++;

 //Step 1 - Determine the gradients
 DV gradient = AD.Grad(f, x[i - 1]); calcsGradient++;
 var hess = AD.Hessian(f, x[i - 1]); calcsHessian++;

 //Loop through every entry in the DV and compute the step for each one.
 List<D> listSteps = new List<D>();
 while (true)
 {
 try
 {
 int v = listSteps.Count;
 listSteps.Add(-gradient[v] / hess[v, v]); // first-gradient divided by second-
gradient
 }
 catch
 { break; }
 }
 DV fullStep = new DV(listSteps.ToArray());

 //Compute the new position using the step
 x[i] = x[i - 1] + fullStep;
 fx[i] = f(x[i]); calcsF++;

 //Check if accuracy has been met
 double magGradient = Math.Sqrt(AD.Pow(gradient[0], 2) + AD.Pow(gradient[1], 2));
 if (magGradient < accuracy)
 break;
 }

 //Return the minimization point.
 x = x.Take(i + 1).ToArray();
 fx = fx.Take(i + 1).ToArray();
 return x[i];

 }

	 	

Work:	Gradient	Descent	Minimization	Method	 	 Christopher	W.	Blake	
Methods	of	Optimization	 	 December	6,	2016	

Page	14	of	14	
	

GradientDescent_SecondOrder_Dampened	
 public static DV SecondOrder_DivisionMethod(Func<DV, D> f, DV startPoint, double accuracy, out int
calcsF, out int calcsGradient, out int calcsHessian, out DV[] x, out double[] fx)
 {
 //Counters
 calcsF = 0; //Count how many times the objective function was used.
 calcsGradient = 0; //Count how many times the gradient was calculated.
 calcsHessian = 0; //Count how many times the second gradient was calculated.

 //Define our X vector
 int maxIterations = 10000;
 x = new DV[maxIterations];
 fx = new double[maxIterations];

 //Pick an initial guess for x
 int i = 0;
 x[i] = startPoint;
 fx[i] = f(x[i]); calcsF++;

 //Loop through gradient steps until zeros are found
 double alpha = 1;
 while (true)
 {
 //Compute next step, using previous step
 i++;

 //Step 1 - Determine the gradients
 DV gradient = AD.Grad(f, x[i - 1]); calcsGradient++;
 var hess = AD.Hessian(f, x[i - 1]); calcsHessian++;

 //Step 2 - Compute full step (alpha = 1). Loop through every entry in the DV and
compute the step for each one.
 List<D> listSteps = new List<D>();
 while (true)
 {
 try
 {
 int c = listSteps.Count;
 listSteps.Add(-gradient[c] / hess[c, c]); // first-gradient divided by second-
gradient
 }
 catch
 { break; }
 }
 DV fullStep = new DV(listSteps.ToArray());

 //Step 3 - Division method, to compute the new x[i] and fx[i]
 DV xPrev = x[i - 1];
 Func<D, D> objFAlpha = delegate (D a)
 {
 DV xNext = xPrev + (a * fullStep);
 return f(xNext);
 };
 alpha = alpha * 0.8;
 double beta = UnimodalMinimization.DivisionSearch(objFAlpha, fx[i - 1], alpha, out
fx[i], ref calcsF);
 x[i] = x[i - 1] + (beta * fullStep);

 //Check if accuracy has been met
 double magGradient = Math.Sqrt(AD.Pow(gradient[0], 2) + AD.Pow(gradient[1], 2));
 if (magGradient < accuracy)
 break;
 }

 //Return the minimization point
 x = x.Take(i + 1).ToArray();
 fx = fx.Take(i + 1).ToArray();
 return x[i];

 }

