
St.	Petersburg	
2016	

	
	

Ministry	of	Education	and	Science	of	the	Russian	Federation	
Peter	the	Great	St.	Petersburg	State	Polytechnic	University	

Institute	of	Computer	Science	and	Control	Systems	
Control	Systems	and	Technology	Department	

	
	
	

Report	for	Laboratory	1	
One-Dimensional	Minimization	Methods	
Discipline:	Methods	of	Optimization	

22	November	2016	
	
	
	
	

	
Student	Group:	13541/8	

	
Christopher	W.	Blake	

	

Professor	
	

Rodionova	E.A.	
	
	
	 	

Work:	One-Dimensional	Minimization	Methods		 Christopher	W.	Blake	
Methods	of	Optimization	 	 November	22,	2016	

Page	2	of	14	
		

Contents	
Introduction	..	3	

Unimodal	...	3	

Method	Descriptions	...	3	

Direct	Uniform	Search	Method	...	3	

Dichotomy	Method	...	4	

Golden	Search	Method	...	5	

Results	...	6	

Direct	Search	Method	...	6	

Dichotomy	Method	...	7	

Golden	Search	Method	...	7	

Conclusion	...	8	

Appendix	A:	C#	Program	...	9	

Main	..	9	

Method	–	Direct	Uniform	Search	..	11	

Method	–	Dichotomy	Search	...	12	

Method	–	Golden	Ratio	Search	...	13	

Class	–	SearchResult	..	14	

	
	 	

Work:	One-Dimensional	Minimization	Methods		 Christopher	W.	Blake	
Methods	of	Optimization	 	 November	22,	2016	

Page	3	of	14	
		

Introduction	
The	following	objective	function	is	provided,	and	a	search	algorithm	should	be	used	for	
locating	the	point	of	minimization.	To	determine	this	minimization	point,	three	different	
methods	are	utilized	and	compared.	
	
Objective	Function:	

f(x)	=	10*x*ln(x)-x^2/2	
where	x	is	in	the	range	[0.2	1]	

	
Methods	

1. Direct	Uniform	Search	
2. Dichotomy	
3. Golden	Ratio	

Unimodal	
Before	such	search	methods	can	be	performed,	the	objective	function	must	be	tested	if	the	
objective	function	is	unimodal	or	not.	(ie	there	can	only	be	one	minimum	in	the	range.)	
	
It	can	be	seen	from	the	below	graph	that	the	function	is	unimodal	for	the	specified	range.	
	

	

Method	Descriptions	
Direct	Uniform	Search	Method	
Description	
A	range	for	the	possible	solutions	is	split	into	“n”	intervals.	The	value	of	the	objective	
function	is	calculated	from	the	beginning	of	this	interval	until	the	minimization	point	is	
located.	The	program	then	repeats	on	this	new	narrow	interval,	until	the	new	range	is	
smaller	than	the	required	accuracy.		
	
Program	Outline	

1.) Specify	inputs	
a. f(x)	–	Objective	Function	

Work:	One-Dimensional	Minimization	Methods		 Christopher	W.	Blake	
Methods	of	Optimization	 	 November	22,	2016	

Page	4	of	14	
		

b. eps	–	Accuracy	Value	
c. a	–	Range	Start	
d. b	–	Range	End	
e. n	–	Number	of	intervals	in	range	

2.) Determine	the	step	size	[h].	Example	:	h	=	(b-a)/n;	
3.) Compute	value	at	current	position	[k].	
4.) Check	if	the	value	f(x[k])	is	greater	than	at	[k-1].	
5.) If	the	value	at	[k]	is	greater	the	minimum	point	has	been	found.	If	not	found,	move	to	

next	[k]	position.	
6.) After	the	minimum	position	of	[k]	is	found,	change	the	range	values	(a	and	b)	to	the	

existing	[k-1]	and	[k+1]	values.	
7.) Check	if	the	new	range	(a-b)	is	smaller	than	the	accuracy	(eps.)	If	so,	end	the	search	

and	continue	to	step	8.	If	not,	repeat	steps	2	through	6.	
8.) Return	the	results	

a. Final	range:	[a	b]	
b. Final	calculations:	[f(a)	f(b)]	
c. Number	of	calculations	of	f(x)	required	to	reach	the	answer.		

	
Dichotomy	Method	
Description	
A	point	is	chosen	in	the	middle	of	the	provide	range.	This	point	is	compared	to	two	points	
slightly	on	each	side	to	determine	which	half	of	the	range	the	solution	is	in,	thereby	
eliminating	half	of	the	range	for	each	cycle.	The	program	then	repeats	on	this	new	narrow	
interval,	until	the	new	range	is	smaller	than	the	required	accuracy.	
	
Program	Outline	

1.) Specify	inputs	
a. f(x)	–	Objective	Function	
b. eps	–	Accuracy	Value	
c. a	–	Range	Start	
d. b	–	Range	End	

2.) Determine	how	large	of	a	step	to	check	on	both	sides	of	the	middle	point.	
a. 	delta	=	(a-b)*0.01;	

3.) Pick	the	point	in	the	middle	of	the	range.	
a. Xi	=	(a+b)/2;	

4.) Pick	the	point	just	before	and	just	after	this	middle	point	
a. X1	=	Xi	-	delta;	X2	=	Xi	+	delta;	

5.) Change	the	range	according	to	Xi,	X1,	and	X2.	This	will	eliminate	half	of	the	range.	
a. If	X1	>	Xi,	then	b	=	X2;	
b. If	X2	>	Xi,	then	a	=	Xi;	

6.) Check	if	the	new	range	(a-b)	is	smaller	than	the	accuracy	(eps.)	If	so,	end	the	search	
and	continue	to	step	7.	If	not,	repeat	steps	2	through	5.	

7.) Return	the	results	
a. Final	range:	[a	b]	
b. Final	calculations:	[f(a)	f(b)]	
c. Number	of	calculations	of	f(x)	required	to	reach	the	answer.		

	

Work:	One-Dimensional	Minimization	Methods		 Christopher	W.	Blake	
Methods	of	Optimization	 	 November	22,	2016	

Page	5	of	14	
		

Golden	Search	Method	
Description	
Using	the	“Golden	Ratio”	(phi)	of	1.618	(0.618),	two	points	are	selected	within	the	range.	
These	two	points	represent	overlapping	portions	of	the	existing	range.	These	two	points	are	
then	compared	to	each	other	to	determine	which	new	range	the	solution	is	in,	thereby	
eliminating	61.8%	of	the	range	for	each	cycle.	The	program	then	repeats	on	this	new	narrow	
interval,	until	the	new	range	is	smaller	than	the	required	accuracy.	
	
Program	Outline	

1.) Specify	inputs	
a. f(x)	–	Objective	Function	
b. eps	–	Accuracy	Value	
c. a	–	Range	Start	
d. b	–	Range	End	

2.) Determine	the	initial	two	points	
a. X1	=	b	–	(b	–	a)/phi	
b. X2	=	a	+	(b	–	a)/phi	

3.) Change	the	range,	X1,	and	X2	according	to	f(X1)	and	f(X2).	
a. If	f(X1)	<	f(X2)	

i. b	=	X2	
ii. x2	=	X1	
iii. X1	=	b	–	(b	–	a)/phi	

b. If	f(X1)	<	f(X2)	
i. a	=	X1	
ii. X1	=	X2	
iii. X2	=	a	+	(b	–	a)/phi	

4.) Check	if	the	new	range	(a-b)	is	smaller	than	the	accuracy	(eps.)	If	so,	end	the	search	
and	continue	to	step	5.	If	not,	repeat	steps	3	through	4.	

5.) Return	the	results	
a. Final	range:	[a	b]	
b. Final	calculations:	[f(a)	f(b)]	
c. Number	of	calculations	of	f(x)	required	to	reach	the	answer.		

	 	

Work:	One-Dimensional	Minimization	Methods		 Christopher	W.	Blake	
Methods	of	Optimization	 	 November	22,	2016	

Page	6	of	14	
		

Results	
The	results	for	each	of	the	three	methods	are	shown	in	the	following	sections.	The	number	
of	required	calculations	of	f(x)	to	find	the	solution	is	used	as	the	comparison.		
	
Direct	Search	Method	
Unlike	the	other	methods	(Dichotomy	and	Golden),	the	Direct	Search	method	has	an	
additional	variable	of	“number	of	intervals”	(n).	As	such	it	brings	to	question	how	this	
additional	variable	affects	the	efficiency	of	the	algorithm.	To	accurately	display	this	affect,	
many	computations	were	completed	with	combinations	of	accuracy	(eps)	and	interval	(n).		
	
It	can	be	seen	in	the	below	chart	that,	there	is	an	optimal	value	for	the	interval	parameter	
around	n=20.	Beyond	this	point	the	required	number	of	calculations	to	achieve	the	solution	
quickly	increases.	Sample	data	for	n	=	10	and	20	is	included	below.	
	

	
	
Orig	A	 Orig	B	 n	 eps	 Final	A	 Final	B	 f(a)	 f(b)	 Calcs	
0.2	 1	 10	 0.1	 0.36	 0.39	 -3.74	 -3.75	 12	
0.2	 1	 20	 0.1	 0.36	 0.44	 -3.74	 -3.71	 7	
0.2	 1	 10	 0.01	 0.379	 0.386	 -3.749	 -3.749	 21	
0.2	 1	 20	 0.01	 0.380	 0.388	 -3.749	 -3.749	 15	
0.2	 1	 10	 0.001	 0.3821	 0.3824	 -3.7491	 -3.7491	 34	
0.2	 1	 20	 0.001	 0.3820	 0.3828	 -3.7491	 -3.7491	 23	
	 	

Work:	One-Dimensional	Minimization	Methods		 Christopher	W.	Blake	
Methods	of	Optimization	 	 November	22,	2016	

Page	7	of	14	
		

Dichotomy	Method	
The	below	graph	shows	that	the	number	of	required	calculations	to	find	the	solution	as	the	
accuracy	is	modified.	The	data	table	for	this	graph	is	included	below.	
	

	
	

Original	A	 Original	B	 eps	 Final	A	 Final	B	 f(a)	 f(b)	 Calculations	
0.2	 1	 0.1	 0.30	 0.4	 -3.73	 -3.74	 12	
0.2	 1	 0.01	 0.381	 0.388	 -3.749	 -3.749	 24	
0.2	 1	 0.001	 0.3820	 0.3828	 -3.7491	 -3.7491	 33	
	
	
Golden	Search	Method	
The	below	graph	shows	that	the	number	of	required	calculations	to	find	the	solution	as	the	
accuracy	is	modified.	The	data	table	for	this	graph	is	included	below.	
	

	
	

Original	A	 Original	B	 eps	 Final	A	 Final	B	 f(a)	 f(b)	 Calculations	
0.2	 1	 0.1	 0.36	 0.43	 -3.74	 -3.72	 7	
0.2	 1	 0.01	 0.378	 0.385	 -3.749	 -3.749	 12	
0.2	 1	 0.001	 0.3818	 0.3827	 -3.7491	 -3.7491	 16	

	
	 	

Work:	One-Dimensional	Minimization	Methods		 Christopher	W.	Blake	
Methods	of	Optimization	 	 November	22,	2016	

Page	8	of	14	
		

Conclusion	
From	the	results,	it	can	be	seen	that	the	minimum	point	of	the	objective	function	is	at	
f(0.382)	=	3.749.	
	
From	the	various	methods,	the	most	effective	solution	is	the	Golden	Section	method.	This	
method,	required	the	least	number	of	calculations	of	f(x)	to	find	the	solution.		
	
Below	is	a	table	comparing	the	various	methods.	The	highlighted	value	is	the	cell	with	the	
least	number	of	calculations	for	a	given	accuracy	requirement.	
	
Method	 Accuracy	(eps)	 Required	Calculations	
Direct	Uniform	Search*	 0.1	 7	
Dichotomy	 0.1	 12	
Golden	Ratio	 0.1	 7	
Direct	Uniform	Search*	 0.01	 15	
Dichotomy	 0.01	 24	
Golden	Ratio	 0.01	 12	
Direct	Uniform	Search*	 0.001	 23	
Dichotomy	 0.001	 33	
Golden	Ratio	 0.001	 16	
*	using	best	interval	(n)	=	20	
	
	 	

Work:	One-Dimensional	Minimization	Methods		 Christopher	W.	Blake	
Methods	of	Optimization	 	 November	22,	2016	

Page	9	of	14	
		

Appendix	A:	C#	Program	
Main	
	
static void Main(string[] args)
{
#region Intro
Console.WriteLine(@"
///////////////////////////////////////
Task: Lab 1 - One Dimensional Minimization Methods
Written By: Christopher W. Blake
Date: 11 Nov. 2016
///////////////////////////////////////
Description:
Creates 3 different seach algorithms for finding
the minimum of a given function f(x) in a range. It then tests
these results and prints them to the console.

1.) Direct search - compares side by side items, starting
from the beginning of the range.
2.) Dichotomy - Computes the middle point to determin
in which half of the range the minimum point is located.
The range is modified, and this process is repeated until
the range is smaller than the tolerance (eps).
3.) Golden Ratio - This is similar to Dichotomy however
it uses the golden ratio instead of cutting in half.
///////////////////////////////////////
");
#endregion

//Objective function for class //f(x) = 10*x*ln(x)-x^2/2, x E[0.2,1]
List<double> epsValues = new List<double> { 0.1, 0.01, 0.001 }; //accuracy
double a = 0.2, b = 1; //range
ObjectiveFunction f = delegate (double x)
{
 double Fx = 10 * x * Math.Log(x) - Math.Pow(x, 2) / 2;
 return Fx;
};

#region Direct Uniform Search
//Open file for output data
StreamWriter outputFile = new StreamWriter(@"..\..\DirectUniformSearch.txt"); //file to
save results

//Show the table header
Console.WriteLine("-----Direct Uniform Search-----");
Console.WriteLine((new SearchResult()).getTableHeader()); // console
outputFile.WriteLine((new SearchResult()).getTableHeader()); //in file

//Loop through all combinations of accuracy and interval
List<int> intervals = new List<int> { 6, 10, 15, 20, 25, 30, 35, 40, 45, 50 };
foreach (double eps in epsValues)
foreach(int n in intervals)
{
 //Calculate results
 SearchResult d = directUniformSearch(f, a, b, n, eps);

 //Display results on console
 Console.WriteLine(d.getTabbedResults());

 //Save results to file
 outputFile.WriteLine(d.getTabbedResults());
}

Work:	One-Dimensional	Minimization	Methods		 Christopher	W.	Blake	
Methods	of	Optimization	 	 November	22,	2016	

Page	10	of	14	
	

//Save the results
outputFile.Close();
#endregion

#region Dichotomy Search
StreamWriter outputFile2 = new StreamWriter(@"..\..\DichotomySearch.txt"); //file to save
results

Console.WriteLine();
Console.WriteLine("-----Dichotomy Search-----");
Console.WriteLine((new SearchResult()).getTableHeader()); // console
outputFile2.WriteLine((new SearchResult()).getTableHeader()); //in file

//Loop through all accuracy options
foreach (double eps in epsValues)
{
 //Calculate results
 SearchResult d = dichotomySearch(f, a, b, eps);

 //Display results on console
 Console.WriteLine(d.getTabbedResults());

 //Save results to file
 outputFile2.WriteLine(d.getTabbedResults());

}

//Save results
outputFile2.Close();
#endregion

#region Golden Ration Search
StreamWriter outputFile3 = new StreamWriter(@"..\..\GoldenRatioSearch.txt"); //file to save
results

Console.WriteLine();
Console.WriteLine("-----Golden Ratio Search-----");
Console.WriteLine((new SearchResult()).getTableHeader()); // console
outputFile3.WriteLine((new SearchResult()).getTableHeader()); //in file

//Loop through all accuracy options
foreach (double eps in epsValues)
{
 //Calculate results
 SearchResult d = goldenRatioSearch(f, a, b, eps);

 //Display results on console
 Console.WriteLine(d.getTabbedResults());

 //Save results to file
 outputFile3.WriteLine(d.getTabbedResults());

}

//Save results
outputFile3.Close();
#endregion

//Wait for user to click to exit
Console.ReadKey();
}

Work:	One-Dimensional	Minimization	Methods		 Christopher	W.	Blake	
Methods	of	Optimization	 	 November	22,	2016	

Page	11	of	14	
	

Method	–	Direct	Uniform	Search	

public static SearchResult directUniformSearch(ObjectiveFunction f, double rangeStart, double rangeEnd,
int nIntervals, double accuracy)
 {
 // Relationship to variables from classroom
 double a = rangeStart;
 double b = rangeEnd;
 int n = nIntervals;
 double eps = accuracy;

 //Counter
 int fCounter = 0;

 //Loop until a solution is found
 while (true)
 {
 //Determine the step size (h)
 double h = (b-a)/n;

 //For storing previous results
 double[] x = new double[n];
 double[] fX = new double[n];

 //Caclulate first two points
 int i = 0;
 x[i] = a + h * i; //i=0;
 fX[i] = f(x[i]); fCounter++;
 i = 1;
 x[i] = a + h * i; //i=1;
 fX[i] = f(x[i]); fCounter++;

 //Loop through each additional step until f(x) on both sides is larger
 for (i=2; i<n; i++)
 {
 //Calculate x and f(x)
 x[i] = a + h*i;
 fX[i] = f(x[i]); fCounter++;

 //Check if f(x) is greater on both sides
 double fxBefore = fX[i-2];
 double fxMiddle = fX[i-1];
 double fxAfter = fX[i];
 if ((fxBefore > fxMiddle) && (fxMiddle < fxAfter))
 {
 //Change the interval
 a = x[i-2];
 b = x[i];

 //Check if the accuracy has been achieved. If so, return the result.
 if (Math.Abs(b - a) < eps)
 {
 return new SearchResult
 {
 //Inputs
 rangeStart = rangeStart,
 rangeEnd = rangeEnd,
 nIntervals = nIntervals,
 accuracy = accuracy,

 //Results
 a = x[i-2],
 b = x[i],
 Fa = fX[i - 2],
 Fb = fX[i],
 CalculationsUntilAnswer = fCounter
 };
 }
 //stop this loop.
 break;
 }
 }
 }
 }

Work:	One-Dimensional	Minimization	Methods		 Christopher	W.	Blake	
Methods	of	Optimization	 	 November	22,	2016	

Page	12	of	14	
	

Method	–	Dichotomy	Search	
	
public static SearchResult dichotomySearch(ObjectiveFunction f, double rangeStart,
double rangeEnd, double accuracy)
 {
 //Relationship to variables from classroom
 double a = rangeStart;
 double b = rangeEnd;
 double eps = accuracy;

 //Counter
 int fCounter = 0;

 //Variables for processing
 double x1, x, x2;
 double f1, fX, f2;

 //Loop until solution found
 while (true)
 {
 //Calculate delta
 double delta = Math.Abs(a-b) * 0.01;

 //Create X values
 x = (a+b)/2;
 x1 = x - delta;
 x2 = x + delta;

 //Calculate Y values
 f1 = f(x1); fCounter++;
 fX = f(x); fCounter++;
 f2 = f(x2); fCounter++;

 //Check if solution found
 if (Math.Abs(b - a) < eps)
 {
 //Return the current values
 return new SearchResult
 {
 //Inputs
 rangeStart = rangeStart,
 rangeEnd = rangeEnd,
 nIntervals = 0,
 accuracy = accuracy,

 //Results
 a = a,
 b = b,
 Fa = f1,
 Fb = f2,
 CalculationsUntilAnswer = fCounter
 };
 }

 //Change the range and repeat
 if (f1 > fX)
 a = x;
 else if (f2 > fX)
 b = x;
 }
 }	

Work:	One-Dimensional	Minimization	Methods		 Christopher	W.	Blake	
Methods	of	Optimization	 	 November	22,	2016	

Page	13	of	14	
	

Method	–	Golden	Ratio	Search	

public static SearchResult goldenRatioSearch(ObjectiveFunction f, double rangeStart, double
rangeEnd, double accuracy)
 { // https://en.wikipedia.org/wiki/Golden_section_search
 // Relationship to variables from classroom
 double a = rangeStart; double b = rangeEnd; double eps = accuracy;

 //For storing results
 int fCounter = 0;
 Dictionary<double, double> fX = new Dictionary<double, double>();

 //Calculate probe points (explained on website)
 double phi = (1 + Math.Sqrt(5)) / 2.0; //golden ratio
 double x1 = b - (b - a) / phi; // (b-a) = distance between x2 and x4
 double x2 = a + (b - a) / phi;

 //Calculate first 2 points
 fX.Add(x1, f(x1)); fCounter++;
 fX.Add(x2, f(x2)); fCounter++;

 //loop until results found
 while (Math.Abs(b - a) > eps)
 {
 //Modify the range
 if (fX[x1] < fX[x2])
 {
 //Change range
 b = x2;

 //Set new probe point
 x2 = x1;
 x1 = b - (b - a) / phi;

 //Calculate at new x1
 fX.Add(x1, f(x1)); fCounter++;
 }
 else
 {
 //Change range
 a = x1;

 //Set new probe point
 x1 = x2;
 x2 = a + (b - a) / phi;

 //Calculate at new x2
 fX.Add(x2, f(x2)); fCounter++;
 }
 }
 //Return the current values
 return new SearchResult
 {
 //Inputs
 rangeStart = rangeStart,
 rangeEnd = rangeEnd,
 nIntervals = 0, //not used by this method
 accuracy = accuracy,
 //Results
 a = a,
 b = b,
 Fa = f(a),
 Fb = f(b),
 CalculationsUntilAnswer = fCounter
 };
 }

Work:	One-Dimensional	Minimization	Methods		 Christopher	W.	Blake	
Methods	of	Optimization	 	 November	22,	2016	

Page	14	of	14	
	

Class	–	SearchResult	
	
public class SearchResult
 {
 //Input parameters
 public double rangeStart;
 public double rangeEnd;
 public int nIntervals;
 public double accuracy;

 //X
 public double a;
 public double b;

 //F(x)
 public double Fa;
 public double Fb;
 public int CalculationsUntilAnswer;

 //Methods
 public string getTableHeader()
 {
 string s = "";
 //Input parameters
 s += "origA";
 s += "\t" + "origB";
 s += "\t" + "n";
 s += "\t" + "eps";

 //Results
 s += "\t" + "finalA";
 s += "\t" + "finalB";
 s += "\t" + "f(a)";
 s += "\t" + "f(b)";
 s += "\t" + "calcs";

 return s;
 }
 public string getTabbedResults()
 {
 //determine number of decimal places to show
 int decPlaces =
BitConverter.GetBytes(decimal.GetBits((decimal)accuracy)[3])[2] + 1;

 string s = "";
 //Input parameters
 s += rangeStart;
 s += "\t" + rangeEnd;
 s += "\t" + nIntervals;
 s += "\t" + accuracy;

 //Results
 s += "\t" + a.ToString("F"+ decPlaces);
 s += "\t" + b.ToString("F" + decPlaces);
 s += "\t" + Fa.ToString("F" + decPlaces);
 s += "\t" + Fb.ToString("F" + decPlaces);
 s += "\t" + CalculationsUntilAnswer;

 return s;
 }
 }

