
St.	Petersburg	
2017	

		
Ministry	of	Education	and	Science	of	the	Russian	Federation	
Peter	the	Great	St.	Petersburg	State	Polytechnic	University	

Institute	of	Computer	Sciences	and	Technologies	
Graduate	School	of	Cyber-Physical	Systems	and	Control	

	
	
	
	
	

Technology	Implementation	Report	
Multi-Agent	Software	Tools	for	Cognition-Based	System	Design	

Discipline:	Cognition-Based	Multi-Agent	Systems	
15	May	2017	

	
	
	
	
	
	
	

	
Student	Group:	13541/8	

	
Christopher	W.	Blake	

	

Professor	
	

Kapralov	V.G.	
	
	
	
	

	 	

Project	Report:	Multi-Agent	Software	Tools	 	Christopher	W.	Blake	
Discipline:	Cognition-Based	Multi-Agent	Systems	 	 15	May,	2017	

Page	2	of	18	

Contents	
Overview	...	3	

Comparison	Points	..	3	

Architecture	..	3	

Agent	Structure	...	4	

Communication	Protocols	...	4	

Software	Platforms	..	4	

AgentSheets	..	6	

AnyLogic	..	6	

Java	Agent	Development	Framework	(JADE)	..	7	

NetLogo	...	7	

Behaviour	Composer	...	7	

Cougaar	...	8	

Soar	...	8	

StarLogo	..	9	

iGEN	...	9	

Implementation	Example	(AnyLogic)	..	10	

Road	Network	Creation	...	10	

Create	Traffic	Patterns	..	12	

Add	Traffic	Controllers	..	15	

Preview	Simulation	..	16	

Conclusion	...	16	

References	...	17	

	
	
	
	
	 	
	 	

Project	Report:	Multi-Agent	Software	Tools	 	Christopher	W.	Blake	
Discipline:	Cognition-Based	Multi-Agent	Systems	 	 15	May,	2017	

Page	3	of	18	

Overview	
There	are	many	different	tools	for	the	design	and	development	of	multi-agent	cognition-based	
systems.	As	of	this	writing,	Wikipedia	lists	13	pages	for	agent	based	programming,	20	pages	
for	 agent-based	 software,	 and	 3	 pages	 for	 agent-oriented	 programming	 languages.	 In	
addition,	it	lists	95	pages	dedicated	to	different	applications,	protocols,	and	models	of	multi-
agent	systems.	There	are	clearly	many	parallel	and	narrowly	developed	projects	for	particular	
domains	such	as	biology,	economics,	 logistics,	or	sociology.	Unfortunately,	a	clear	standard	
has	not	yet	emerged,	indicating	that	the	field	is	not	yet	mature.	
	
There	 is	 however	 a	 small-enough	 subset	 of	 more	 commonly	 utilized	 tools	 that	 can	 be	
reviewed.	Of	 the	hundreds	of	 tools	 listed,	 less	 than	10	
had	 their	own	meaningful	 content	pages	or	developed	
websites.	 These	 were	 reviewed	 and	 their	 original	
websites	 were	 consulted	 to	 gain	 an	 understanding	 of	
their	diversity,	capability,	and	overall	following.	Of	these	
software	 options	 all	 were	 Java	 based	 except	 one,	 and	
there	are	 clearly	 three	 categories:	 Education,	 Standard	
Performance,	and	High	Performance.	
	
Before	discussing	these	software	packages	and	toolkits,	an	overview	of	multi-agent	systems	
will	 initially	be	provided.	This	 is	 intended	to	act	as	a	reminder	of	what	such	platforms	and	
toolkits	should	provide.	Each	of	the	meaningful	software	tools	is	introduced	and	a	summary	
is	provided.	Finally,	an	implementation	example	using	AnyLogic	is	shown,	which	simulates	cars	
driving	through	a	city.	

Comparison	Points	
A	multi-agent	 system	 for	 cognition-based	activities	has	 to	be	 flexible	and	consider	 various	
high-level	objectives.	Without	meeting	such	objectives,	it	would	be	considered	specific	to	a	
particular	 domain,	 which	 defeats	 the	 essential	 robust	 and	 open	 nature	 of	 a	 multi-agent	
system.	Below	is	a	possible	list	of	considerations	for	such	a	system.	
	

1. Different	and	future	systems	of	intelligence.	
2. Different	communication	protocols.	
3. Different	agent	types.	
4. Heterogeneity	of	open	systems	and	other	architectures.	
5. Complete	or	partial	decentralization,	or	monolithic	structures.	
6. Addition	and	subtraction	of	agents.	
7. Addition	and	subtraction	of	system	resources.	

	
Architecture	
The	architecture	environments	can	be	discreet,	virtual,	or	continuous	and	it	can	be	described	
by	the	following	properties.	

1. Accessibility	–	possibility	level	of	gathering	information	about	the	environment.	
2. Determinism	-	if	an	action	performed	in	the	environment	causes	a	definite	effect.	
3. Dynamics	-	how	many	entities	influence	the	environment	at	a	given	moment.	
4. Discreteness	-	if	the	number	of	possible	actions	in	the	environment	is	finite.	
5. Episodicity	-	if	agent	actions	in	a	time	period	influence	other	periods.	
6. Dimensionality	-	if	spatial	characteristics	are	important	factors	of	the	environment,	and	if	the	

agent	considers	space	in	its	decision	making.	

Figure	1:	AnyLogic	business	simulation	

Project	Report:	Multi-Agent	Software	Tools	 	Christopher	W.	Blake	
Discipline:	Cognition-Based	Multi-Agent	Systems	 	 15	May,	2017	

Page	4	of	18	

Agent	Structure	
The	definition	of	an	agent	is	critical	for	multi-agent	systems,	since	the	architecture	is	built	
around	them.	As	such	there	are	typically	three	categories	of	agents:	Software,	Robotic,	and	
Human.	Additionally,	they	may	be	passive,	which	simply	exist,	or	active	agents	which	have	
simple	or	complex	goals.	Finally,	there	are	the	three	fundamental	components	of	being	an	
agent,	listed	below.	
	

1. Autonomy	–	to	be	able	to	perform	completely,	or	nearly	completely,	alone.	It	may	
even	be	considered	self-aware.	

2. Local	Perception	–	the	agent	is	only	capable	of	perceiving	a	portion	of	the	
environment	relative	to	its	duties	and	tasks.	

3. Decentralization	–	There	is	no	predetermined	controlling	agent.	Although	
dynamically	this	sort	of	control	may	develop	within	a	simulation.	
	

Communication	Protocols	
Generally	 speaking,	 the	majority	 of	 the	 projects	 and	 platforms	 use	 self-made	 proprietary	
protocols.	 However,	 a	 few	 more	 options	 appear	 to	 follow	 or	 at	 least	 support	 Agent	
Communication	Language	(ACL)	and	Knowledge	Query	Manipulation	Language	(KQML).	
	
ACL	is	the	replacement	for	KQML	and	both	were	developed	by	an	organization	known	as	FIPA	
(Foundation	for	Intelligent	Physical	Agents).	They	are	both	based	on	speech	act	theory	and	
define	performatives	also	known	as	communicative	acts.	The	actual	content	of	a	performative	
varies	per	project	because	of	project	goals,	ontology,	and	overall	design.		
	
FIPA	is	a	standards	body	for	setting	and	developing	standards	for	heterogeneous	agent-based	
systems.	It	was	founded	in	1996	to	create	a	full	set	of	standards	for	implementing	systems	for	
agents	 to	 run	 within	 as	 well	 how	 to	 specify	 how	 agents	 communicate	 and	 interact.	
Unfortunately,	it	has	never	gained	strong	corporate	commercial	support	and	standards	were	
transferred	to	an	IEEE	committee.	

Software	Platforms		
As	previously	mentioned,	 there	 are	many	different	 software	platforms	 currently	 available,	
many	of	which	are	likely	not	being	used	outside	of	a	small	domain.	Below	is	a	list	of	platforms	
that	were	found.	Most	are	not	large	enough	to	have	their	own	Wikipedia	page.	However,	the	
items	in	bold	will	be	discussed	further,	as	they	have	some	larger	degree	of	following	or	are	
significantly	developed.	
	

1. Agent	Anytime	Anywhere	(AAA)	
2. Agent	Building	and	Learning	

Environment	(ABLE)	
3. AgentBuilder	
4. AgentService	
5. AgentSheets	
6. Altreva	Adaptive	Modeler	
7. AnyLogic	
8. AOR	Simulation	
9. Ascape	

10. BDI5Jade	
11. Behaviour	Composer	
12. Boris	
13. Brahms	
14. Breve	
15. Common-pool	Resources	and	

Multi-Agent	Systems	(CORMAS)	
16. Construct	
17. Cougaar	
18. CybelePro	

Project	Report:	Multi-Agent	Software	Tools	 	Christopher	W.	Blake	
Discipline:	Cognition-Based	Multi-Agent	Systems	 	 15	May,	2017	

Page	5	of	18	

19. DALI	
20. Descartes	
21. DeX	
22. DigiHive	
23. Distributed	Operator	Model	(D-

OMAR)	
24. ECHO	
25. EVE	
26. FAMOJA	
27. FLAME	
28. FLAME	GPU	
29. FLUXY	
30. Framsticks	
31. GAMA	
32. GPU	Agents	
33. GROWlab	
34. ICARO-T	
35. iGen	
36. Insight	Maker	
37. JABM	
38. Java	Agent	Development	

Framework	(JADE)	
39. Jade’s	sim++	
40. JAMEL	
41. Janus	
42. JAS-mine	
43. Jason	Interpreter	of	AgentSpeak	
44. Java	Auction	Simulator	API	(JASA)	
45. Java	Enterprise	Simulator	(jES)	
46. JCA-Sim	
47. jEcho	
48. JESS	
49. JIAC	
50. Laboratory	for	Simulation	

Development	
51. MacStarLogo	
52. MAGSY	
53. MASON	
54. Mesa	
55. Micro	and	Multilevel	Modelling	

Software	(MIMOSE)	
56. Multi	Agent	Development	Kit	

(MaDKit)	

57. Multi-Agent	Modeling	Language	
(MAML)	

58. Multi-Agent	Simulation	Suite	
(MASS)	

59. Multi-Agent	Simulations	for	the	
Social	Sciences	(MAS-SOC)	

60. Multimodeling	Object-Oriented	
Simulation	Environment	(MOOSE)	

61. NetLogo	
62. Object	Based	Environment	for	

Urban	Simulation	(OBEUS)	
63. Omonia		
64. OpenOME	
65. OpenStarLogo	
66. oRIS	
67. Political	Science	Identity	(PS-I)	
68. Repast	
69. Shell	for	Simulate	Agent	Systems	

(SeSAm)	
70. SimAgent	
71. SimBioSys	
72. SimPack	
73. SimPlusPlus	
74. Soar	
75. Spatial	Modeling	Environment	

(SME)	
76. StarLogo	
77. StarLogo	TNG	
78. StarLogoT	
79. Strictly	Declarative	Modeling	

Language	(SDML)	
80. Sugarscape	
81. Swarm	
82. System	Effectiveness	Analysis	

Simulation	(SEAS)	
83. TerraME	
84. Tryllian	Agent	Development	Kit	
85. VisualBots	
86. VSEit	
87. Xholon	
88. ZEUS	

	
	 	

Project	Report:	Multi-Agent	Software	Tools	 	Christopher	W.	Blake	
Discipline:	Cognition-Based	Multi-Agent	Systems	 	 15	May,	2017	

Page	6	of	18	

AgentSheets	
Agentsheets	 is	 a	 cyber-learning	 tool	 focused	 on	 education	 of	 programming	
through	game	design.	 It	 is	mostly	used	 in	middle	and	high	school	 levels	and	
supported	by	the	National	Educational	Technology	Standards	(NETS).	
	
The	 programming	 language	 is	 primarily	 drag-and-drop	 at	
beginning	levels	to	produce	games	equivalent	to	Frogger.	The	
beginners	 environment	 is	 separated	 into	 a	 grid	 which	 can	
contain	 agents	 represented	 in	 various	 ways	 such	 as	 text,	
numbers,	 images,	 or	 animations.	 However,	 more	 advanced	
games	with	access	to	true	java	code	and	artificial	intelligence	
can	also	be	produced.	
	
Outside	of	education,	it	is	often	used	for	modeling	scientific	
phenomena	 involving	 tens	 of	 thousands	 of	 agents	 and	
scenarios	 such	 as	 mud	 slides,	 bridges	 collapsing,	 and	
ecosystems.	
	
AnyLogic	
AnyLogic	 is	a	commercial	 level	simulation	package	without	
any	 particular	 domain.	 It	 even	 offers	 a	 free	 license	 for	
educational	 purposes	 and	 is	 built	 in	 a	modular	 way	 using	
Java,	 to	 support	 extensibility.	 Its	 roots	 are	 from	 Saint	
Petersburg	 Technical	 University	 in	 the	 Distributed	
Computer	Network	research	group.	
	
It	 was	 named	 AnyLogic	 because	 it	 supports	 three	
different	 approaches	 to	 system	 design:	 	 System	
Dynamics,	 Discrete	 Event	 Simulation,	 and	 Agent-
Based	Modeling.	 Any	 of	 these	 approaches	may	 be	
used	 or	 combined.	 However,	 its	 focus	 and	
architecture	 are	 primarily	 related	 to	 business	
concepts	 such	 as:	 Market	 and	 Competition,	 healthcare,	
Manufacturing,	 Supply	 Chain,	 Logistics,	 Retail,	 Business	
Processes,	 Social	 and	 Ecosystem	 Dynamics,	 Defense,	
Project/Asset	 Management,	 IT	 Infrastructure,	 Pedestrian	
Dynamics	and	Traffic,	Aerospace,	and	Photovoltaics.	
	
	
	
	
	
	
	

Primary	Domain:	 Education	
First	Release:	 1991	
Last	Release	 May,	2014	

Main	Platform:	 Java	
Licenses:	 Proprietary	

	

Primary	Domain:	 Business	
First	Release:	 2000	
Last	Release	 2016	

Main	Platform:	 Java	
Licenses:	 Proprietary,	

Free	
	

Project	Report:	Multi-Agent	Software	Tools	 	Christopher	W.	Blake	
Discipline:	Cognition-Based	Multi-Agent	Systems	 	 15	May,	2017	

Page	7	of	18	

Java	Agent	Development	Framework	(JADE)	
JADE	is	not	a	stand-alone	software	tool.	It	is	instead	a	free	
framework	 toolkit	 developed	 for	 Java.	 Additionally,	 it	
follows	 the	 FIPA-ACL	 standard	 communication	 protocol.	
Hence	 it	 could	 be	 extended	 to	 communicate	with	 other	
systems,	if	necessary.	
	
Its	 primary	 focus	 is	 to	 ease	 development	 of	 a	 standards-
based	simulation	environment.	 It	does	 this	by	providing	a	
standardized	 environment	 of	 agent	 execution,	 agent	
design/communication,	 and	 a	 toolkit	 for	 management	 of	
intelligent	agents.	
	
There	are	two	special	agents	required	by	all	initialized	environments:	

1. Directory	Facilitator	Agent	–	manages	agent	availability.	
2. Agent	Management	System	–	allows	creation	and	destruction	of	agents	and	

containers,	and	is	the	only	agent	allowed	to	stop	the	platform.	
	
As	JADE	is	a	toolkit,	it	provides	a	superclass	called	Agent.	All	user	created	agents	inherit	from	
this	class	and	hence	additional	or	custom	functionality	can	be	created.		
	
NetLogo	
NetLogo	 is	 focused	 toward	 students	 and	 teachers,	 but	 is	 also	 used	 in	
research.	Its	focus	is	on	simulating	natural	and	social	phenomena	and	is	
normally	used	for	studying	complex	systems	vs	time.	As	instructions	are	
given	to	agents,	both	micro-	and	macro-level	patterns	can	be	discovered.	
	
It	was	developed	upon	the	Logo	programming	language	which	
is	 meant	 to	 be	 easily	 accessible	 to	 non-programming-
experienced	users	such	as	children	and	domain	experts.	The	
basic	building	blocks	are	known	as	turtles,	patches,	links,	and	
observers.	
	
The	 library	toolkit	offers	many	predefined	controls	such	as	switches,	sliders,	choosers,	and	
inputs,	and	also	supports	creation	of	custom	controls.	

	
Behaviour	Composer	
Behaviour	 Composer	 is	 actually	 an	 extension	 and	
automation	tool	created	for	running	NetLogo	agent	models.	
It	was	primarily	developed	for	the	Modelling4All	project	at	
University	 of	 Oxford.	 It	 enables	 simplified	 creation	 of	
defined	micro-behaviours,	which	can	be	further	customized	
if	 desired.	 These	 newly	 defined	 behaviours	 may	 also	 be	
shared	on	the	web	via	URLS.	
	
From	a	 technical	 side,	 the	 interface	 runs	on	Google’s	web	
toolkit	 and	 app	 engine,	 but	 everything	 runs	 within	 a	 java	
applet	in	a	web	browser	on	the	user’s	computer.	

Primary	Domain:	 None	
First	Release:	 2000	
Last	Release	 2015	

Main	Platform:	 Java	
Licenses:	 Free	

	

Primary	Domain:	 Psychology	
First	Release:	 -	
Last	Release	 -	

Main	Platform:	 Java	
Licenses:	 BSD	

	

Primary	Domain:	 Psychology	
First	Release:	 1999	
Last	Release	 2016	

Main	Platform:	 Java	
Licenses:	 GPL	

	

Project	Report:	Multi-Agent	Software	Tools	 	Christopher	W.	Blake	
Discipline:	Cognition-Based	Multi-Agent	Systems	 	 15	May,	2017	

Page	8	of	18	

Cougaar	
Is	 a	 military-grade	 research	 project	 converted	 to	
commercial	use.	It	is	an	open	source	toolkit/architecture	
which	includes	infrastructure	and	core	services.	
	
It	 was	 initially	 developed	 by	 DARPA	 to	 use	 cognitive	
agents	to	solve	military	 logistics	problems.	Even	though	its	
focus	was	logistics,	it	was	developed	in	a	generic	manner	to	
support	 other	 domains.	 As	 such,	 and	 because	 of	 the	 high	
levels	of	funding	it	received,	it	is	considered	to	represent	one	
of	the	most	advanced	reasoning	and	intelligent	automation	
systems	 available.	 The	 Department	 of	 Defense	 converted	
the	platform	into	a	business	solution,	known	as	ActiveEdge,	for	building	applications	as	robust	
as	military	applications.	
	
The	 agents	 and	 environments	 are	 separate	 items	 and	 are	 possible	 to	 be	 developed	
independently.	 However,	 they	 must	 be	 combined	 during	 runtime.	 Some	 of	 the	 example	
services	 provided	 include	 Blackboard	 Publishing	 (subscription	 model),	 HTTP	 servlets,	
Knowledge	Representation	systems,	and	Agent	Coordination	Techniques.	
	
Soar	
Soar	 is	 an	architecture	 focused	on	approximating	 rational	behavior,	with	
focus	on	functionality	and	performance	by	ensuring	all	primitive	capabilities	
are	available	to	realize	human-level	abilities.	All	decisions	are	made	using	
short	term	sensory	data	and	long	term	knowledge	data.	The	goal	is	to	create	
an	intelligent	agent	that	is	as	generic	as	possible.	
	
There	 is	 a	 single	 framework	 with	 built-in	 subcomponents	 for	
handling	 all	 major	 subtasks.	 Such	 subtasks	 include	 a	 single	
representation	of	knowledge	(temporary	and	permanent),	a	single	
mechanism	 for	 generating	 goals	 (and	 subgoals),	 and	 a	 single	
learning	mechanism.	The	learning	mechanism	has	additionally	been	
adjusted	 to	 support	 simultaneous	 different	 methods	 such	 as	
chunking,	reinforcement,	episodic,	and	semantic	learning,	all	at	runtime.	
	
The	 platform	 offers	 primitive	 capabilities	 which	 can	 be	 combined	 to	 create	 human-level	
capabilities	such	as	reactive	decision	making,	situational	awareness,	deliberate	reasoning	and	
comprehension,	planning	and	all	forms	of	learning.	
	
It	incorporates	a	custom	markup	language	known	as	Soar	Markup	Language	(SML)	which	can	
be	used	for	interfacing	with	other	programing	languages	such	as	Java	and	Python.	
	
	
	

Primary	Domain:	 None	
First	Release:	 1996	
Last	Release	 2008	

Main	Platform:	 Java	
Licenses:	 Open	Source	

	

Primary	Domain:	 None	
First	Release:	 1983	
Last	Release	 2014	

Main	Platform:	 C/C++	
Licenses:	 BSD	

	

Project	Report:	Multi-Agent	Software	Tools	 	Christopher	W.	Blake	
Discipline:	Cognition-Based	Multi-Agent	Systems	 	 15	May,	2017	

Page	9	of	18	

StarLogo	
StarLogo	 is	 an	 extension	 of	 the	 programming	 language	
Logo	 and	 is	 designed	 for	 educational	 purposes,	 in	
particular	 the	 study	 of	 decentralized	 systems.	 There	 are	
many	 flavors	 of	 StarLogo,	 which	 are	 listed	 below.	
Additionally,	it	is	similar	to	NetLogo.	
	

1. MacStarLogo	–	modified	to	run	natively	on	Macintosh	
computers.	

2. OpenStarLogo	–	a	semi-open	source	version.	
3. StarLogo	TNG	–	inclusion	of	a	3D	world,	OpenGL	

graphics,	and	block	structures.	
4. StartLogo	Nova	–	block	structures	and	3D	visualization,	

but	in	a	web	browser.	
	
iGEN	
iGEN	is	a	benchmarking	tool	used	for	comparing	different	multi-agent	systems.	There	are	
seven	different	subcomponents	each	focused	on	a	different	benchmark	element.	
Unfortunately,	there	is	limited	or	no	documentation	easily	available	for	its	usage.	
	

1. iGenCPU	–	CPU	and	fractal	generation.	
2. iGenRAM	–	Memory	simulation	of	lottery	
3. iGEnOLTP	–	OLTP	database	
4. iGENBATCH	–	BATCH	database	
5. iGENBIDW	–	Business	Intelligence	
6. iGENLDAPs	–	LDAP	searching	
7. iGENLDAPsm	–	LDAP	SiteMinder	emulation	

	
	 	

Primary	Domain:	 Education	
First	Release:	 -	
Last	Release	 2011	

Main	Platform:	 Java	
Licenses:	 BSD	

	

Project	Report:	Multi-Agent	Software	Tools	 	Christopher	W.	Blake	
Discipline:	Cognition-Based	Multi-Agent	Systems	 	 15	May,	2017	

Page	10	of	18	

Implementation	Example	(AnyLogic)		
AnyLogic	 is	 probably	 the	 most	 accessible	 and	 well-developed	 option	 from	 the	 reviewed	
software	platforms.	As	such,	 it	 is	the	most	 likely	candidate	for	commercial	applications.	To	
demonstrate	AnyLogic,	a	model	for	simulating	road	traffic	is	described.	This	model	provides	
insights	about	the	following	items:	
	

1. Road	network	creation	based	on	satellite	image.	
2. Traffic	flow	logic.	
3. Traffic	lights	and	yield	signs	setup.	

	
Road	Network	Creation	

1. Create	a	new	blank	model.	

	
	

2. Import	a	satellite	image	of	the	city.	

	
	

3. Adjust	simulation	scale	to	match	image	scale.	

	

Project	Report:	Multi-Agent	Software	Tools	 	Christopher	W.	Blake	
Discipline:	Cognition-Based	Multi-Agent	Systems	 	 15	May,	2017	

Page	11	of	18	

4. Create	roads	using	traffic	library	tools.	

				

	

	
	
	 	

Project	Report:	Multi-Agent	Software	Tools	 	Christopher	W.	Blake	
Discipline:	Cognition-Based	Multi-Agent	Systems	 	 15	May,	2017	

Page	12	of	18	

Create	Traffic	Patterns	
1. Create	car	block	flow	charts	for	each	traffic	pattern,	using	traffic	library.	

													 	
a. Traffic	Pattern:	Top-left	=>	Straight

	

	
	
b. Traffic	Pattern:	Bottom-right	=>	Turn	Right,	Turn	Left,	Straight	

	 	

	
	 	

Project	Report:	Multi-Agent	Software	Tools	 	Christopher	W.	Blake	
Discipline:	Cognition-Based	Multi-Agent	Systems	 	 15	May,	2017	

Page	13	of	18	

	
c. Traffic	Pattern:	Bottom	=>	Turn	Left,	Straight	

	

	
	

d. Top	=>	Straight	

	

	
	 	

Project	Report:	Multi-Agent	Software	Tools	 	Christopher	W.	Blake	
Discipline:	Cognition-Based	Multi-Agent	Systems	 	 15	May,	2017	

Page	14	of	18	

2. Associate	car	blocks	with	roads.	(Repeat	for	each	traffic	pattern	flow	chart.)	
a. Car	Source	

	
	

b. Car	Movement	Option	1	(Straight)	

	

	
	

c. Car	Movement	Option	2	(Turn	Right)	

	
	

d. Car	Movement	Option	3	(Turn	Left)	

	

Project	Report:	Multi-Agent	Software	Tools	 	Christopher	W.	Blake	
Discipline:	Cognition-Based	Multi-Agent	Systems	 	 15	May,	2017	

Page	15	of	18	

Add	Traffic	Controllers	
1. Yield	Signs	–	Click	a	stop	line	and	check	the	“Yield”	box.	

	
	

2. Traffic	Lights	
a. Add	a	stop	light	block	near	an	intersection.	

	 	
	

b. Specify	the	intersection	to	control.	

	 	
c. Adjust	stop	light	phases.	

	 	
	

Project	Report:	Multi-Agent	Software	Tools	 	Christopher	W.	Blake	
Discipline:	Cognition-Based	Multi-Agent	Systems	 	 15	May,	2017	

Page	16	of	18	

Preview	Simulation	
1. Start	Simulation	

	
	

2. Watch	Simulation	

	
	

Conclusion	
Of	the	different	software	tools	and	packages	reviewed,	there	appear	to	be	3	major	different	
categories	that	would	influence	a	decision.	Additionally,	all	packages	are	Java	based,	except	
one	which	 is	C/C++	based.	The	majority	of	packages	are	 focused	on	education.	 	Two	have	
standard,	as	expected,	components	and	thus	qualify	as	standard	performance.	The	final	two	
are	very	mature	with	many	capabilities	so	they	can	be	labeled	as	high	performance.	However,	
it	should	be	noted	that	there	is	no	common	protocol	amongst	any	of	the	software	discussed,	
preventing	natural	cross	communication	capabilities.	
	

1. Educational	–	AgentSheets,	Behaviour	Composer,	NetLogo,	StarLogo	
2. Standard	–	JADE,	Soar	
3. High	Performance	–	AnyLogic,	Cougaar	

	
Finally,	 an	 example	 implementation	 of	 AnyLogic	 was	 shown,	 since	 it	 is	 the	 most	 likely	
candidate	for	appearing	in	commercial	applications.	This	example	is	able	to	be	created	in	less	
than	30	minutes	and	simulates	car	traffic	through	a	city.	It	includes	three	origin	points	for	cars,	
two	stop	light	systems,	and	one	yield	sign.	After	configuration,	a	live	simulation	is	viewable,	
allowing	easy	previewing.		 	

Project	Report:	Multi-Agent	Software	Tools	 	Christopher	W.	Blake	
Discipline:	Cognition-Based	Multi-Agent	Systems	 	 15	May,	2017	

Page	17	of	18	

References	
1. Agent	Architecture.	(n.d.)	In	Wikipedia.	Retrieved	April	14,	2017,	from	

https://en.wikipedia.org/wiki/Agent_architecture	
2. Agent-Based	Model.	(n.d.)	In	Wikipedia.	Retrieved	April	14,	2017,	from	

https://en.wikipedia.org/wiki/Agent-based_model	
3. AgentSheets.	(n.d.)	In	Wikipedia.	Retrieved	April	15,	2017,	from	

https://en.wikipedia.org/wiki/AgentSheets	
4. AgentSheets.	Retrieved	April	15,	2017,	from	

http://www.agentsheets.com	
5. AnyLogic.	(n.d.)	In	Wikipedia.	Retrieved	April	15,	2017,	from	

	https://en.wikipedia.org/wiki/AnyLogic	
6. AnyLogic.	Retrieved	April	15,	2017,	from	

http://www.anylogic.com	
7. Behaviour	Composer.	Retrieved	April	15,	2017,	from	

http://m.modelling4all.org	
8. Behaviour	Composoer.	(n.d.)	In	Wikipedia.	Retrieved	April	15,	2017,	from	

	https://en.wikipedia.org/wiki/Behaviour_Composer	
9. Category:	Multi-Agent	Systems.	(n.d.)	In	Wikipedia.	Retrieved	April	14,	2017,	from	

https://en.wikipedia.org/wiki/Category:Multi-agent_systems	
10. Cognitive	Architecture.	(n.d.)	In	Wikipedia.	Retrieved	April	14,	2017,	from	

https://en.wikipedia.org/wiki/Cognitive_architecture	
11. Comparison	of	Agent-Based	Modeling	Software.	(n.d.)	In	Wikipedia.	Retrieved	April	

14,	2017,	from	https://en.wikipedia.org/wiki/Comparison_of_agent-
based_modeling_software	

12. Cougaar.	(n.d.)	In	Wikipedia.	Retrieved	April	15,	2017,	from	
	https://en.wikipedia.org/wiki/Cougaar	

13. Cougaar.	Retrieved	April	15,	2017,	from	
http://www.cougaarsoftware.com	

14. Discrete	Event	Simulation.	(n.d.)	In	Wikipedia.	Retrieved	April	14,	2017,	from	
https://en.wikipedia.org/wiki/Discrete_event_simulation	

15. Distributed	Artificial	Intelligence.	(n.d.)	In	Wikipedia.	Retrieved	April	14,	2017,	from	
https://en.wikipedia.org/wiki/Distributed_artificial_intelligence	

16. FIPA.	(n.d.)	In	Wikipedia.	Retrieved	April	14,	2017,	from	
https://en.wikipedia.org/wiki/FIPA	

17. iGen.	(n.d.)	In	Wikipedia.	Retrieved	April	15,	2017,	from	
	https://en.wikipedia.org/wiki/IGen	

18. Intelligent	Agent.	(n.d.)	In	Wikipedia.	Retrieved	April	14,	2017,	from	
https://en.wikipedia.org/wiki/Intelligent_agent	

19. JADE.	(n.d.)	In	Wikipedia.	Retrieved	April	15,	2017,	from	
	https://en.wikipedia.org/wiki/Java_Agent_Development_Framework	

20. JADE.	Retrieved	April	15,	2017,	from	
http://jade.tilab.com	

21. Multi-Agent	System.	(n.d.)	In	Wikipedia.	Retrieved	April	14,	2017,	from	
https://en.wikipedia.org/wiki/Multi-agent_system	

22. NetLogo.	(n.d.)	In	Wikipedia.	Retrieved	April	15,	2017,	from	
	https://en.wikipedia.org/wiki/NetLogo	

23. NetLogo.	Retrieved	April	15,	2017,	from	
https://ccl.northwestern.edu/netlogo	

Project	Report:	Multi-Agent	Software	Tools	 	Christopher	W.	Blake	
Discipline:	Cognition-Based	Multi-Agent	Systems	 	 15	May,	2017	

Page	18	of	18	

24. Soar.	(n.d.)	In	Wikipedia.	Retrieved	April	15,	2017,	from	
	https://en.wikipedia.org/wiki/Soar_(cognitive_architecture)	

25. Soar.	Retrieved	April	15,	2017,	from	
http://soar.eecs.umich.edu	

26. Software	Agent.	(n.d.)	In	Wikipedia.	Retrieved	April	14,	2017,	from	
https://en.wikipedia.org/wiki/Software_agent	

27. StarLogo	Nova.	Retrieved	April	15,	2017,	from	
http://www.slnova.org	

28. StarLogo	TNG.	Retrieved	April	15,	2017,	from	
http://education.mit.edu/starlogo-tng	

29. StarLogo.	(n.d.)	In	Wikipedia.	Retrieved	April	15,	2017,	from	
	https://en.wikipedia.org/wiki/StarLogo	

