
St.	Petersburg	
2017	

	
Ministry	of	Education	and	Science	of	the	Russian	Federation	
Peter	the	Great	St.	Petersburg	State	Polytechnic	University	

Institute	of	Computer	Sciences	and	Technologies	
Graduate	School	of	Cyber-Physical	Systems	and	Control	

	
	
	
	
	

Report	1	
Transportation	Problem	

Discipline:	Modern	Problems	of	Informatics	and	Computer	Science	
10	March	2017	

	
	
	
	
	
	
	

	
Student	Group:	13541/8	

	
Christopher	W.	Blake	

	

Professor	
	

Rodionova	E.A.	
	
	
	
	

	 	

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	2	of	22	

Contents	

Introduction	..	3	
Method	Verification	..	4	
Balance	Check	...	4	
Cost	Computation	...	4	
Answer	Check	..	4	

Method	Descriptions	...	5	
North	West	Corner	Approximation	...	5	
Minimum	Cost	Element	Approximation	..	6	
Least	Potentials	Optimization	...	7	
Minimum	Delivery	Limitation	..	9	

Results	...	10	
Manual	Solution	..	10	
Software	Solution	..	10	

Conclusion	...	11	
Appendix	1	–	Sample	Problems	...	12	
Appendix	2	–	C#	Code	...	13	
Transport	Problem	Class	...	13	
North	West	Corner	Approximation	Method	...	15	
Minimum	Cost	Element	Approximation	Method	..	16	
Least	Potentials	Optimization	Method	..	17	
Least	Potentials	Optimization	–	Support	Methods	...	19	

	
	

	 	

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	3	of	22	

Introduction	

A	transportation	problem	can	be	described	as	a	supply	
and	 demand	 problem.	 There	 is	 a	 specific	 supply	 of	
product	 available	 at	 specified	 location	 and	 a	 certain	
demand	 required	 at	 other	 locations.	 Delivery	 from	
each	 possible	 supplier	 to	 each	 demander	 also	 has	 a	
different	cost	associated	with	it.	Hence,	the	goal	is	to	
minimize	 the	cost	while	 still	 transporting	all	 required	
products.		
	
Such	a	transportation	problem	is	typically	modeled	in	a	
node-like	 fashion	 (Figure	1).	The	suppliers	are	shown	
on	the	 left	and	the	demanders	on	the	right.	The	cost	
associated	 with	 delivery	 is	 the	 connecting	 line.	 For	
calculation	purposes,	it	is	easier	to	represent	this	in	a	
table	 (Figure	 2).	 The	 suppliers	 and	 their	
values	are	shown	on	the	left/right	as	“S-“.	
The	 demanders	 are	 shown	 along	 the	
top/bottom	as	“D-“.	The	costs	associated	
with	 each	 delivery	 path	 are	 the	 cell	
intersecting	an	“S-“	row	and	“D-”	column.	
	
For	 solving	 an	 feasible	 solution	 to	 a	
transportation	 problem,	 three	 methods	
will	be	discussed,	as	well	as	the	limitation	
of	minimum	delivery.		
	
The	three	methods	are	referred	to	as:	

1. “North	West	Corner”	approximation	method	
2. “Minimum	Cost	Element”	approximation	method	
3. 	“Least	Potentials”	optimization	method	

	
A	sample	problem	is	provided	(#	81)	from	appendix	1.	This	sample	problem	is	solved	manually	
to	show	the	process	of	each	of	 the	three	methods.	Finally,	a	program	 is	demonstrated	for	
automatically	 solving	 by	 these	 same	 methods,	 and	 includes	 the	 limitation	 of	 “Minimum	
Delivery”.	
	 	

Figure	2:	Transport	problem	in	table	form	

Supplier	 Demander	

Figure	1:	Transport	problem	in	node	form	

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	4	of	22	

Method	Verification	

Balance	Check	

Before	the	transportation	problem	can	be	solved,	the	supply	and	demand	must	be	checked	
such	that	they	are	balanced.	This	simply	means	that	the	available	supply	equals	the	amount	
demanded.	If	the	problem	is	not	balanced,	additional	fake	rows	must	be	added	to	account	
for	the	extra	supply	or	demand.	

!"#$%"&' =
)*+&, -. = /.

01$"&, -. <> /.
	

Example:	

	
	
Given	the	above	problem	table,	we	find	the	supply	and	demand	to	be	equal.	Hence	the	
transportation	problem	is	closed,	and	a	solution	can	be	computed.	
	
-+44$5 = 	 -. = 19 + 14 + 13 + 18 = 64		
/&>1?' = 	 /. = 19 + 14 + 13 + 18 = 64		
-+44$5 = /&>1?' ∴ A1$1?B&'		
	
Cost	Computation	

The	total	cost	of	delivery	is	calculated	by	multiplying	the	cost	for	each	path	by	the	number	of	
products	delivery	on	that	path.		
	
Example:	

	
	
C%)1$	#%") =	24*14	+	8*5	+	1*14	+	7*4	+	4*7	+	8*2	+	15*8	+	5*10	
C%)1$	#%") =			336				+		40		+			14			+		28		+		28		+			16		+	120			+	50	
C%)1$	#%") =	632	
	
Answer	Check	

The	standard	method	to	check	the	solution,	is	to	compare	the	number	of	deliveries	to	the	
number	of	suppliers	and	delivers.	The	solution	should	meet	the	following	criteria	equation.	
	

#/&$!E&*!&" = #-+44$!&*" + #/&>1?'&*" − 1	
	
Example,	using	the	previous	table:	
#/&$!E&*!&" = 	8,		#-+44$!&*" = 4,		#/&>1?'&*" = 5	
8 = 4 + 5 − 1	 ∴ C*+&				 	

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	5	of	22	

Method	Descriptions	

North	West	Corner	Approximation	

This	approximation	is	performed	by	continuously	finding	the	most	northwest	cell	of	the	
table	and	picking	the	min	between	the	supplier	and	demander	for	delivery.	This	process	is	
repeated	for	the	entire	grid	until	all	supply	and	demand	is	met.	
	
Step	1	–	Find	most	north	west	cell	

	

	
1. Locate	the	cell	that	is	most	north	

west.	
2. Ensure	there	is	available	supply.	
3. Ensure	that	is	available	demand.	
	

Step	2	–	Choose	delivery	amount	

	

	
1. Select	the	minimum	value	between	

the	Supply	and	the	demand.	Min	
{14,	19}	=	14	

2. Set	this	minimum	(14)	to	the	cell.	
3. Subtract	the	difference	from	the	

supply	and	demand.	

Step	3	–	Remove	rows	and	columns	

	

	
1. Mark	columns	columns	that	no	

longer	have	demand.	
2. Mark	rows	that	no	longer	have	

supply.	

Step	4	-	Repeat	

	

	
1. Repeat	steps	1	-	3	

Step	5	-	Finish	

	

1. Repeat	step	4	until	the	table	is	full	
and	all	supply	is	transported	to	all	
demanders.	

D0 D1 D2 D3 D4
S0 24 8 10 23 18 19

S1 19 1 11 9 6 14

S2 5 7 4 8 9 13

S3 6 13 3 15 5 18

14 23 7 10 10

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	6	of	22	

Minimum	Cost	Element	Approximation	

This	approximation	is	performed	by	continuously	finding	the	available	cell	with	minimum	
cost	and	picking	the	min	between	the	supplier	and	demander	for	delivery.	This	process	is	
repeated	for	the	entire	grid	until	all	supply	and	demand	is	met.	
Step	1	–	Find	minimum	cost	cell	

	

	
1. Locate	the	cell	that	has	the	lowest	

cost	value.	
2. Ensure	there	is	available	supply.	
3. Ensure	that	is	available	demand.	
	

Step	2	–	Choose	delivery	amount	

	

	
1. Select	the	minimum	value	

between	the	Supply	and	the	
demand.	Min	{14,	19}	=	14	

2. Set	this	minimum	(14)	to	the	cell.	
3. Subtract	the	difference	from	the	

supply	and	demand.	

Step	3	–	Remove	rows	and	columns	

	

	
1. Mark	columns	columns	that	no	

longer	have	demand.	
2. Mark	rows	that	no	longer	have	

supply.	

Step	4	-	Repeat	

	

	
1. Repeat	steps	1	-	3	

Step	5	-	Finish	

	

1. Repeat	step	4	until	the	table	is	full	
and	all	supply	is	transported	to	all	
demanders.	

	

	 	

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	7	of	22	

Least	Potentials	Optimization	

This	method	is	an	optimization	method	of	an	existing	feasible	solution.	It	calculates	a	penalty	
score	for	each	cell.	By	reducing	the	penalty	for	each	cell,	the	solution	becomes	optimized.	
This	is	reduced	by	identifying	an	adjustment	loop,	modifying	by	a	specific	amount,	and	
repeating	the	process.	When	all	penalties	are	zero	or	negative,	the	optimal	solution	has	
been	found.	
	
Step	1	–	Create	initial	approximation	

	

	
1. Generate	an	initial	feasible	

solution	using	an	approximation	
method.	

Step	2	–	Calculate	U	&	V	values	

	

	
1. Identify	allocated	cells.	
2. Assume	U1	=	0	
3. Solve	remaining	U	&	V	values	with	

these	cells	and	this	equation:	
	
Us	+	Vd	=	Csd	
	
Where:	
s	=	supplier	index	
d	=	demander	index	
C	=	Cost	

Step	3	–	Calculate	penalty	values	

	

	
1. Identify	unallocated	cells.	
2. Calculate	penalty	values	at	these	

cells	using	this	equation:	
	
Psd	=	Us	+	Vd	–	Csd	
	
Where:	
s	=	supplier	index	
d	=	demander	index	
P	=	penalty	
C	=	cost	

3. Check	penalty	values.	If	all		
Step	4	–	Check	end	situation	

	

1. Check	all	penalty	values.	
2. If	all	penalty	values	are	negative	

or	zero,	then	the	optimal	solution	
has	been	found.	

3. If	positive	values	fond,	continue	to	
step	4.	

*Highlighted	cells	are	not	negative,	
hence	not	optimal	solution.	

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	8	of	22	

Step	4	–	Find	start	position	

	

	
1. Identify	cell	with	highest	penalty	

value.	
2. Uses	this	cell	as	the	start	point	for	

the	next	step.	

Step	5*	–	Find	calculation	loop	

	

	
1. Start	at	the	highest	penalty	cell	

found	in	previous	step.	
2. *Create	a	loop	through	cells	back	

to	the	start	cell.	
3. Turning	may	only	occur	at	

allocated	cells.	
4. Path	steps	must	not	be	diagonal.	

Step	6	–	Identify	adjustment	amount	

	

	
1. At	each	turn,	mark	the	cell,	

alternating,	with	addition	or	
subtraction.	This	will	be	the	
adjustment	operation.	

2. From	the	cells	marked	as	
subtraction,	pick	the	lowest	value.	
This	will	be	the	delivery	
adjustment	value	(dDel).	

Step	7	–	Adjust	solution	&	return	to	step	2	

	

	
1. Using	the	operations	and	

adjustment	value	in	previous	step,	
modify	the	current	solution.	The	
equation	should	be:	
	
	Delnew	=	Delold	+/-	dDel	
	
Where:	
Del	=	delivery	amount	
dDel	=	adjustment	amount	

	
*Loop	Discovery	Algorithm	

1. Identify	all	allowable	movements	(vertically/horizontally)	from	each	non-empty	cell	
to	other	non-empty	cells.	

2. Remove	cells	with	only	1	movement	possibility.	These	are	endpoints.	
3. Remove	cells	that	do	not	allow	turning.	These	are	cells	between	other	cells.	
4. Repeat	steps	2	and	3	until	no	changes	occur.	
5. The	remaining	cells	are	the	path	of	the	cycle.	

	 	

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	9	of	22	

Minimum	Delivery	Limitation	

This	 limitation	 requires	 that	a	minimum	delivery	be	made	between	a	 specific	 supplier	and	
demander.	Mathematically	it	has	the	following	structure.	
	

/&$H!?IJ ≥	∝	
	
Where:	

/&$H!?IJ =	Minimum	deliver	amount	for	path	[s,d]	
" =	index	of	supplier	
' =	index	of	demander	

	
This	problem	is	solved	by	modifying	the	original	problem	and	follows	a	modified	solution	logic,	
involving	three	steps.	
	

1.) For	each	specified	minimum	delivery	at	[s,d].	
a. Remove	the	amount	from	supply	
b. Remove	the	amount	from	demand.	

2.) Calculate	the	solution	per	a	previously	discussed	method.	
(ie	North	West,	Minimum	Cost,	or	Least	Potentials).	

3.) For	each	specified	minimum	delivery	amount.	
a. Add	the	amount	to	the	solution	at	index	[s,d].	

	
	 	

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	10	of	22	

Results	

Manual	Solution	

Using	the	previously	mentioned	methods,	the	solution	was	calculated	manually	in	excel.	
Below	is	a	summary	of	each	solution.	The	sum	of	the	supply	and	demand	
	
Problem	Form	Check:	
Supply	=	Demand	=	64	=>	Balanced	
	

	

Method:	North	West	
Cost:	632	
Solution	Check:	
Deliveries	(8)	=	Suppliers	(4)	+	Demand	(5)	–	1	
=>	True	

	

Method:	Minimum	Cost	
Cost:	458	
	

	

Method:	Least	Potentials	
Cost:	388	
Solution	Check:	
Deliveries	(8)	=	Suppliers	(4)	+	Demand	(5)	–	1	
=>	True		

	
Software	Solution	

A	 software	 program	 with	 visual	 interface	 for	 solving	
transportation	problems	has	been	 created.	 The	 interface	
can	be	seen	on	the	right	(Figure	3)	
	
Using	 this	 program,	 the	 user	may	 enter	 the	 cost	 values,	
supply	 amounts,	 and	 demand	 amounts	 into	 a	 grid.	 After	
entering	the	costs,	 the	user	simply	presses	“GO”	and	the	
solutions	are	displayed	on	the	right.	
	
Minimum	Delivery	Requirement	
The	 user	 may	 select	 the	 second	 tab,	 where	 delivery	
requirements	may	be	entered	(Figure	4).	The	user	simply	
enters	values,	and	again	presses	“GO”.		
	
	
	 	

Figure	3:	Transportation	Problem	Software	

Figure	4:	Minimum	Delivery	Adjustment	

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	11	of	22	

Conclusion	

A	 transportation	 problem	 was	 solved	 by	 various	
methods,	including	the	“North	West	Corner”,	“Minimum	
Cost	 Element”	 and	 “Least	 Potentials”	 methods.	 The	
“North	 West	 Corner”	 and	 “Minimum	 Cost	 Element”	
methods	are	used	for	producing	an	initial	approximation	
and	 the	 “Least	 Potentials”	 method	 is	 used	 for	 further	
refinement.	 This	 was	 demonstrated	 manually	 for	 each	
method	 using	 an	 example	 problem.	 Finally,	 the	 above	
methods	 were	 programmed	 into	 a	 simple-to-use	
interface.	
	
Comparing	the	solutions	for	example	81,	the	cost	values	
show	 that,	 in	 this	 case,	 the	 “Minimum	 Cost	 Element”	
outperforms	 the	 “North	 West”	 method.	 However	 the	
cost	 is	 able	 to	 be	 further	 reduced	 using	 the	 “Least	
Potentials”	optimization.	
	
Solution	Costs	
North	West	Corner:		 	 632	
Minimum	Cost	Element:		 458	
Least	Potentials:		 	 388	
	

	
	
	
	
	
	
	
	
	

	 	

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	12	of	22	

Appendix	1	–	Sample	Problems	

	 	

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	13	of	22	

Appendix	2	–	C#	Code	

Transport	Problem	Class	

public class TransportProblem
{
 //Fields
 private double[] suppliers = null;
 private double[] demanders = null;
 private double[,] costs = null;
 private double[,] minimumDelivery = null;

 //Constructor
 public TransportProblem(int numSuppliers, int numDemanders)
 {
 this.suppliers = new double[numSuppliers];
 this.demanders = new double[numDemanders];
 this.costs = new double[numSuppliers, numDemanders];
 this.minimumDelivery = new double[numSuppliers, numDemanders];
 }

 //Properties
 public bool isReady
 {
 get
 {
 if (suppliers == null) return false;
 if (demanders == null) return false;
 if (costs == null) return false;

 //Else
 return true;
 }
 }
 public bool isBalanced
 {
 get
 {
 if (suppliers.Sum() == demanders.Sum())
 return true;
 else
 return false;
 }
 }
 public double[] Suppliers
 {
 get { return suppliers; }
 set
 {
 //check if new array matches size
 if(value != null)
 if (value.Length != suppliers.Length)
 throw new ArgumentException("Array size must be the same.");

 //Save data
 suppliers = value;

 }
 }
 public double[] Demanders
 {
 get { return demanders; }
 set
 {

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	14	of	22	

 //check if new array matches size
 if (value != null)
 if (value.Length != demanders.Length)
 throw new ArgumentException("Array size must be the same.");

 //Save Data
 demanders = value;

 }
 }
 public double[,] Costs
 {
 get { return costs; }
 set
 {
 //check if new array matches size
 if (value != null)
 if (value.GetLength(0) != costs.GetLength(0) || value.GetLength(1) !=
costs.GetLength(1))
 throw new ArgumentException("Array size must be the same.");

 //Save Data
 costs = value;
 }
 }
 public double[,] MinimumDelivery
 {
 get { return minimumDelivery; }
 set
 {
 //check if new array matches size
 if (value != null)
 if (value.GetLength(0) != costs.GetLength(0) || value.GetLength(1) !=
costs.GetLength(1))
 throw new ArgumentException("Array size must be the same.");

 //Save Data
 minimumDelivery = value;

 }
 }	
}	 	

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	15	of	22	

North	West	Corner	Approximation	Method	

public double[,] solveNorthWest()
{
 return solveNorthWest(true);
}
public double[,] solveNorthWest(bool enableLimations)
{
 //Switch for limations modifications
 if (enableLimations)
 {
 //Account for minimum delivery
 adjustMinimumDelivery_FromSupplyAndDemand(false); //Subtract away
 }

 //Create temporary variables
 double[] sup = (double[]) suppliers.Clone();
 double[] dem = (double[]) demanders.Clone();
 double[,] solution = new double[suppliers.Length, demanders.Length];

 //Cycle through each solution position
 int s = 0;
 int d = 0;
 while (s < sup.Length && d < dem.Length)
 {
 //Get min of supply and demand
 double min = (new double[] { sup[s], dem[d] }).Min();

 //Set to solution
 solution[s, d] = min;

 //Remove from supply and demand
 sup[s] -= min;
 dem[d] -= min;

 //Find next most northwest position
 try
 {
 while (sup[s] == 0) { s++; }
 while (dem[d] == 0) { d++; }
 }
 catch
 {
 //All finished
 break;
 }
 }

 //Switch for limations modifications
 if (enableLimations)
 {
 //Account for minimum delivery
 addMinimumDelivery_ToSolution(solution);
 adjustMinimumDelivery_FromSupplyAndDemand(true); //Add back
 }

 //Return the results
 return solution;
}

	 	

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	16	of	22	

Minimum	Cost	Element	Approximation	Method	

public double[,] solveMinimumCostElement()
{
 //Account for minimum delivery
 adjustMinimumDelivery_FromSupplyAndDemand(false); //Subtract away

 //Create temporary variables
 double[] sup = (double[])suppliers.Clone();
 double[] dem = (double[])demanders.Clone();
 double[,] solution = new double[suppliers.Length, demanders.Length];

 //Get dimensions
 int rows = solution.GetLength(0);
 int cols = solution.GetLength(1);

 //Cycle through each solution position
 while (sup.Sum() > 0 && dem.Sum() > 0)
 {
 //Find min cost position, that has no solution value
 double currMinCost = double.PositiveInfinity;
 int rMin = 0;
 int cMin = 0;
 for (int r = 0; r < rows; r++)
 for (int c = 0; c < cols; c++)
 {
 //Skips finished solutions
 if (solution[r,c] != 0) { continue; }
 if (sup[r] == 0) { continue; }
 if (dem[c] == 0) { continue; }

 if (costs[r,c] < currMinCost)
 {
 rMin = r;
 cMin = c;
 currMinCost = costs[r, c];
 }
 }
 int s = rMin;
 int d = cMin;

 //Get min of supply and demand
 double min = (new double[] { sup[s], dem[d] }).Min();

 //Set to solution
 solution[s, d] = min;

 //Remove from supply and demand
 sup[s] -= min;
 dem[d] -= min;
 }

 //Account for minimum delivery
 addMinimumDelivery_ToSolution(solution);
 adjustMinimumDelivery_FromSupplyAndDemand(true); //Add back

 return solution;
}

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	17	of	22	

Least	Potentials	Optimization	Method	
public double[,] solveUV(out int cycles)
{
 //Account for minimum delivery
 adjustMinimumDelivery_FromSupplyAndDemand(false); //Subtract away

 //Get dimensions
 int rows = Costs.GetLength(0);
 int cols = Costs.GetLength(1);

 //Get Northwest approximation
 double[,] solutionCurr = solveNorthWest(false);

 //Cycle until end condion met
 cycles = 0; //For statistics
 while (true)
 {

 #region Calculate UV values
 double[] u;
 double[] v;
 calculateUV_Values(solutionCurr, out u, out v);
 #endregion

 #region Calculate penalty values, track location of greatest penalty
 double[,] penalties = new double[rows, cols];
 int rMax = -1;
 int cMax = -1;
 double penaltyMax = double.NegativeInfinity;
 bool allNegative = true;

 //Calculate penalties
 for (int r = 0; r < rows; r++)
 {
 for (int c = 0; c < cols; c++)
 {
 //Calculate only for unassigned cells
 if (solutionCurr[r, c] == 0)
 {
 //Get and store value
 double penalty = u[r] + v[c] - Costs[r, c];
 penalties[r, c] = penalty;

 //Check sign
 if (penalty > 0) allNegative = false;

 //Check for max
 if (penalty > penaltyMax)
 {
 penaltyMax = penalty;
 rMax = r;
 cMax = c;
 }
 }
 }
 }
 #endregion

 //Check end condion
 if (allNegative)
 {
 //Finished
 break;
 }

 #region Generate new iteration of solution
 //Identify loop

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	18	of	22	

 int rLoopStart = rMax;
 int cLoopStart = cMax;
 int[,] loop = findLoop(solutionCurr, rLoopStart, cLoopStart);

 //Get lowest number in "negative" group (odd entries of loop)
 double minValue = double.PositiveInfinity;
 for (int p = 0; p < loop.GetLength(0); p++)
 {
 //Get cell value
 int r = loop[p, 0];
 int c = loop[p, 1];

 //Determine current operation
 if (p % 2 == 1) //odd (negative operation numbers)
 {
 if (solutionCurr[r, c] < minValue)
 minValue = solutionCurr[r, c];
 }
 }

 //Adjust current solution
 for (int p = 0; p < loop.GetLength(0); p++)
 {
 //Get cell value
 int r = loop[p, 0];
 int c = loop[p, 1];

 //Determine current operation
 if (p % 2 == 0) //even or zero
 {
 //Add the minimum value to the solution
 solutionCurr[r, c] += minValue;
 }
 else //odd
 {
 //Remove the minimum value from the solution
 solutionCurr[r, c] -= minValue;
 }
 }
 #endregion

 cycles++;
 }

 //Account for minimum delivery
 addMinimumDelivery_ToSolution(solutionCurr);
 adjustMinimumDelivery_FromSupplyAndDemand(true); //Add back

 return solutionCurr;
}

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	19	of	22	

Least	Potentials	Optimization	–	Support	Methods	

private void calculateUV_Values(double[,] solution, out double[] u, out double[] v)
{
 //Get dimensions
 int rows = solution.GetLength(0);
 int cols = solution.GetLength(1);

 //Result variables
 double?[] U = new double?[rows];
 double?[] V = new double?[cols];

 //Assume U0 = 0 for row 0, Solve for
 U[0] = 0;

 //Repeat loop until all values of U and V are solved
 while (true)
 {
 #region Check if U and V finished
 //Check U values
 bool uFinished = true;
 for (int i = 0; i < U.Length; i++)
 {
 if (U[i] == null)
 {
 uFinished = false;
 break;
 }
 }

 //Check V values
 bool vFinished = true;
 for (int i = 0; i < V.Length; i++)
 {
 if (V[i] == null)
 {
 vFinished = false;
 break;
 }
 }

 //Both finished
 if (uFinished && vFinished) break;
 #endregion

 //Try to solve for V values
 for (int r = 0; r < rows; r++)
 {
 //If U not set, V cannot be determined
 if (U[r] == null)
 continue;

 //Set values of V for assigned cells
 for (int c = 0; c < cols; c++)
 {
 //If already set, move to next
 if (V[c] != null)
 continue;

 //Set the value
 if (solution[r, c] > 0)
 V[c] = Costs[r, c] - U[r];
 }
 }

 //Try to solve for U values
 for (int c = 0; c < cols; c++)
 {

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	20	of	22	

 //If V not set, U cannot be determined
 if (V[c] == null)
 continue;

 //Set values of U for assigned cells
 for (int r = 0; r < rows; r++)
 {
 //If already set, move to next
 if (U[r] != null)
 continue;

 //Set the value
 if (solution[r, c] > 0)
 U[r] = Costs[r, c] - V[c];
 }
 }
 }

 //Return results
 u = new double[rows];
 for (int i = 0; i < rows; i++)
 u[i] = (double)U[i];

 v = new double[cols];
 for (int i = 0; i < cols; i++)
 v[i] = (double)V[i];
}
private int[,] findLoop(double[,] solution, int rStart, int cStart)
{
 //Get dimensions
 int rows = solution.GetLength(0);
 int cols = solution.GetLength(1);

 #region Generate possible directions
 //Add temporary value at start point (so it is included in directions generation)
 solution[rStart, cStart] = 1;

 //Compute possible directions at each cell
 List<int[]>[,] allowedDirections = new List<int[]>[rows, cols];
 for (int r = 0; r < rows; r++)
 {
 for (int c = 0; c < cols; c++)
 {
 //Ignore unassigned cells
 if (solution[r, c] == 0)
 continue;

 //If not created yet, create it
 allowedDirections[r, c] = new List<int[]>();

 //Check row
 for (int cCurr = 0; cCurr < cols; cCurr++)
 {
 if (cCurr != c & solution[r, cCurr] > 0)
 {
 allowedDirections[r, c].Add(new int[] { 0, cCurr - c });
 }
 }

 //Check colum
 for (int rCurr = 0; rCurr < rows; rCurr++)
 {
 if (rCurr != r & solution[rCurr, c] > 0)
 {
 allowedDirections[r, c].Add(new int[] { rCurr - r, 0 });
 }
 }

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	21	of	22	

 }
 }

 //Remove temporary value at start point
 solution[rStart, cStart] = 0;
 #endregion

 #region Remove bad directions
 bool changeFound = true;
 while (changeFound)
 {
 //Assume no change first
 changeFound = false;

 //Remove items with one entry
 for (int r = 0; r < rows; r++)
 {
 for (int c = 0; c < cols; c++)
 {
 List<int[]> ad = allowedDirections[r, c];
 if (ad != null && ad.Count == 1)
 {
 //Get the entry
 int[] dir = ad.First();

 //Get the cell where it points, and remove the negative version
 allowedDirections[r + dir[0], c + dir[1]].RemoveAll(i => i[0] == -
dir[0] && i[1] == -dir[1]);

 //Remove this list
 allowedDirections[r, c] = null;

 //Allow another loop
 changeFound = true;
 }
 }
 }

 //Remove items that can't turn
 for (int r = 0; r < rows; r++)
 {
 for (int c = 0; c < cols; c++)
 {
 List<int[]> ad = allowedDirections[r, c];
 if (ad != null)
 {
 //Check if both row and column movement exist
 int countColumnMovement = ad.FindAll(dir => dir[0] == 0).Count;
 int countRowMovement = ad.FindAll(dir => dir[1] == 0).Count;

 //If column move
 if (countColumnMovement == 0 || countRowMovement == 0)
 {
 //For each entry
 foreach (int[] dir in ad)
 {
 //Get the cell where it points, and remove the negative version
 allowedDirections[r + dir[0], c + dir[1]].RemoveAll(i => i[0]
== -dir[0] && i[1] == -dir[1]);
 }

 //Remove this list
 allowedDirections[r, c] = null;

 //Allow another loop
 changeFound = true;
 }

Report	1:	Transportation	Problem	 	 Christopher	W.	Blake	
Modern	Problems	of	Informatics	and	Computer	Science	 	 10	March,	2017	

Page	22	of	22	

 }

 }
 }
 }
 #endregion

 #region Generate Path
 //Start at specified position
 List<int[]> path = new List<int[]>();
 path.Add(new int[] { rStart, cStart });
 int rCurrr = rStart;
 int cCurrr = cStart;

 //Start loop
 while (true)
 {
 //Get current directions
 List<int[]> directionsCurr = allowedDirections[rCurrr, cCurrr];

 //Get first entry
 int[] dir = directionsCurr.First();

 //Move to this entry
 rCurrr += dir[0];
 cCurrr += dir[1];
 directionsCurr = allowedDirections[rCurrr, cCurrr];

 //Check if back at start
 if (rCurrr == rStart && cCurrr == cStart)
 break;

 //Add to path
 path.Add(new int[] { rCurrr, cCurrr });

 //Remove negative reference, so as not to get sent back
 allowedDirections[rCurrr, cCurrr].RemoveAll(i => i[0] == -dir[0] && i[1] == -
dir[1]);
 }
 #endregion

 #region Convert path
 //Copy from list to 2d array
 int[,] loop = new int[path.Count, 2];
 for (int i = 0; i < path.Count; i++)
 {
 //copy row value
 loop[i, 0] = path[i][0];

 //copy column value
 loop[i, 1] = path[i][1];
 }
 #endregion

 return loop;
}

