
St.	Petersburg	
2017	

	
Ministry	of	Education	and	Science	of	the	Russian	Federation	
Peter	the	Great	St.	Petersburg	State	Polytechnic	University	

Institute	of	Computer	Sciences	and	Technologies	
Graduate	School	of	Cyber-Physical	Systems	and	Control	

	
	
	
	
	

Practice	Task	–	Ch	10	
Bigram/Trigram	Model	(Markov	Model)	–	Text	Generator	

Discipline:	Intellectual	Computing	
4	April	2017	

	
	
	
	
	
	
	

	
Student	Group:	13541/8	

	
Christopher	W.	Blake	

	

Professor	
	

Kuchmin	A.Y	
	
	
	
	

	 	

Practice	Task:	Ch	10	–	Text	Generator	 		 Christopher	W.	Blake	
Intellectual	Computing	 	 April	4,	2017	

Page	2	of	4	

Contents	
Introduction	..	3	

Background	...	3	

Word	Relationship	...	3	

Word	Categories	...	3	

Algorithm	...	3	

Results	...	4	

Conclusion	...	4	

	
	
	 	

Practice	Task:	Ch	10	–	Text	Generator	 		 Christopher	W.	Blake	
Intellectual	Computing	 	 April	4,	2017	

Page	3	of	4	

Introduction	
Chapter	 10	 of	 “AI	 Application	 Programming”	 by	 M.	 Tim	 Jones	 is	 about	 Markov	 models,	
specifically	the	bigram/trigram	models,	and	their	use	in	a	text	generator.	A	Markov	model	is	
created	to	represent	the	probabilistic	relationship	between	words.		The	model	provides	the	
percentage	possibility	of	a	next	word	in	a	sentence.	Using	this	likelihood,	words	from	existing	
text	are	classified	as	“start”,	“middle”,	and	“end”	words.	The	number	of	occurrences	of	word	
pairs/triplets	 is	 also	 recorded.	 After	 having	 formed	 this	 model,	 a	 random	 start	 word	 is	
selected,	 and	 next	 words	 are	 predicted	 until	 an	 end	
word	 is	 found.	 Using	 this	 process	 a	 new	 sentence,	
which	 is	 statistically	 similar	 to	 the	 existing	 text,	 is	
created.	
	
A	sample	C#	program	has	been	created	to	demonstrate	
this	text	generation	system.	The	user	simply	needs	to	
select	a	text	file	with	sample	sentences,	and	the	bigram	
and	 trigram	 models	 are	 generated.	 The	 bigram	 or	
trigram	model	may	also	be	selected.	At	this	point,	the	
user	may	press	the	“Generate”	button	to	create	new	text.			

Background		
Word	Relationship	
All	 words	 in	 the	 text	 file	 are	 compared	 in	 a	 pair-wise	
(bigram)	 or	 triplet-wise	 (trigram)	 fashion. Every	
combination	 of	 two/three	 words	 is	 added	 to	 a	 list	 of	
connections.	The	number	of	occurrences	of	this	word	pair	
is	 additionally	 counted	 and	 later	 used	 to	 determine	
probabilities.	An	example	of	this	can	been	seen	in	figure	2,	
with	the	word	“dial”	and	“delete”.	“Dial”	has	a	70%	chance	
of	having	the	word	“number”	after	it.	“Delete”	has	an	80%	
chance	of	the	word	“number”	after	it.			
	
Word	Categories	
Each	new	word	is	added	to	a	list	of	available	words.	It	 is	
also	 recorded	 where,	 in	 the	 sentence,	 this	 word	 was	
found.	 This	 is	 simply	 categorized	 into	 “Start”,	 “Middle”,	
and	 “End”.	 Using	 the	 number	 of	 occurrences	 in	 each	
position,	 a	 word	 has	 a	 percentage	 degree	 to	 each	
category.		
	
Algorithm	
The	 below	 steps	 describes	 the	 general	 worfklow	 of	
building	 a	 sentence,	 from	 selecting	 a	 start	 word,	 to	
adding	content,	to	ending	the	sentence.	(See	figure	3.)	

1.) Select	a	random	start	word.	
2.) Chose	the	next	word	

a. Create	 a	 list	 of	 words	 with	 occurences	
greater	than	zero.	

Figure	1:	C#	Sample	Program	

Figure	2:	Word	Pair	Probability

Figure	3:	Word	Selection	Process

Practice	Task:	Ch	10	–	Text	Generator	 		 Christopher	W.	Blake	
Intellectual	Computing	 	 April	4,	2017	

Page	4	of	4	

b. Randomly	pick	a	word.	
c. Generate	a	random	value	(0	to	1).	
d. Compare	word	probability	to	random	number.	

i. If	it	passes,	chose	this	word.	
ii. If	it	failes,	return	to	step	b.		

3.) Add	word	to	sentence.	
4.) Check	if	word	is	of	category	“End”.	

a. Generate	a	random	value	(0	to	1).	
b. Compare	percentage	of	“End”	truthness	to	random	number.	
c. If	it	failes,	return	to	step	2.	Do	not	end	the	sentence.	
d. If	it	passes,	continue	to	step	5.	End	the	sentence.	

5.) Convert	list	of	words	to	a	string	and	present	to	the	user.	

Results	
The	following	sentence	were	generated	using	a	sample	text	file	with	108	Einstein	quotations,	
which	resulted	in	1830	bigram	connections	and	1910	trigram	connections.	The	bigram	model	
produced	more	interesting	results	which	were	sometimes	difficult	to	read.	The	trigram	model	
often	 produced	 readable	 sentences	 but	 it	 also	 had	 the	 tendency	 to	 reproduce	 existing	
sentences.	Below	are	example	generated	sentences,	which	were	thought	provoking.	
	
Bigram	

1. Insanity: doing it if it is more violent.
2. Knowledge relates to overcoming the modernist's snobbishness.
3. Bear in the shifting sand.
4. Heroism on from the facts.
5. And as it has been given a soul, everything that created it has been preserved,

given superstitions.
6. Look deep into your difficulties in the kiss the door directly to go away for truth

leave elegance to overcome man's insecurity before me like an incorrigible
nonconformist warmly acclaimed.

7. Great pleasure indeed.
8. Anger dwells only reads too much and artistic powers to stop questioning.

Trigram	
1. Schools, the collection of prejudices acquired by age eighteen.
2. Common is a somewhat new kind of religion.
3. Look into your hands as your inheritance in order to be lost.

Conclusion	
A	Markov	network	of	nodes	was	used	to	successfully	categorize	sample	sentences	into	bigram	
and	 trigram	 networks.	 Using	 these	 word	 pairs	 and	 triplets,	 new	 sentences	 similar	 to	 the	
original	 content	 were	 created.	 The	 bigram	model	 produced	 difficult	 to	 read	 (but	 unique)	
results.	 The	 trigram	 model	 produced	 easier-to-read	 content	 but	 had	 the	 tendency	 to	
reproduce	existing	sentences.	
	

