
St.	Petersburg	
2017	

	
Ministry	of	Education	and	Science	of	the	Russian	Federation	
Peter	the	Great	St.	Petersburg	State	Polytechnic	University	

Institute	of	Computer	Sciences	and	Technologies	
Graduate	School	of	Cyber-Physical	Systems	and	Control	

	
	
	
	
	

Practice	Task	–	Ch	8	
Rule	Based	System	

Discipline:	Intellectual	Computing	
3	April	2017	

	
	
	
	
	
	
	

	
Student	Group:	13541/8	

	
Christopher	W.	Blake	

	

Professor	
	

Kuchmin	A.Y	
	
	
	
	

	 	

Practice	Task:	Ch	8	–	Rule	Based	System	 		 Christopher	W.	Blake	
Intellectual	Computing	 	 April	3,	2017	

Page	2	of	5	

Contents	
Introduction	..	3	

Background	...	3	

Process	..	3	

Rule	Definition	...	3	

Results	...	4	

Conclusion	...	4	

Appendix	1	–	Example	Rule	Data	Base	file	..	5	

	
	
	 	

Practice	Task:	Ch	8	–	Rule	Based	System	 		 Christopher	W.	Blake	
Intellectual	Computing	 	 April	3,	2017	

Page	3	of	5	

Introduction	
Chapter	8	of	“AI	Application	Programming”	by	M.	Tim	Jones	is	about	the	Rule	Based	Systems.		
A	rule	based	system	uses	a	working	memory	and	set	of	rules.	The	rules	are	described	by	two	
components	 (antecedents	 and	 consequents)	 which	 define	 the	 triggers	 and	 actions	 to	 be	
performed.	
	
A	sample	C#	program	has	been	created	to	show	
this	type	of	system.	A	redundant	sensing	system	
is	created	and	the	rule	based	system	is	used	for	
automatically	adjusting	 it	when	failures	occur.	
The	 rules	 for	 this	 system	 are	 defined	 in	 an	
external	file	which	is	easily	adjusted	by	the	user.	
It	should	be	noted	that	the	actual	program	runs	
within	the	logic	of	the	sample	program.	Hence,	
different	new	rule	applications	can	be	created,	
simply	by	changing	the	rule	file.		

Background	
Process	
The	main	process	 flow	 is	explained	using	 the	 figure	 to	 the	
right	 (borrowed	 from	 the	 	 book).	 This	 figure	 depicts	 the	
workflow	for	a	rule	based	system. 	
	
1) Initialize	 system,	 loading	 any	 required	 initial	 memory	

states.		
2) Read	the	rules	file	

a) Convert	text	to	antecedents.	
b) Convert	text	to	consequents.	

3) Compare	antecedents	to	working	memory.	
a) Identify	which	match	working	memory.	
b) Obtain	first	rule	that	will	modify	memory.	

4) Perform	rules	of	consequent	
5) Repeat	steps	3	and	4	until	no	further	changes	occur.		
	
	
Rule	Definition	
A	 rule	has	 three	 components:	name,	antecedents,	 and	
consequents.	These	are	all	defined	in	a	separate	text	file	
(see	figure	3	and	appendix	1).	A	wild	card	character	of	“?”	
is	 used	 to	 pass	 memory	 values	 between	 different	
antecedents	and	consequents.	
	
The	 antecedents	 are	 a	 list	 of	 match	 requirements	 to	
working	memory.	If	all	antecedents	match	the	memory,	then	it	is	possible	to	trigger	the	rule.	
A	wild	card	character	of	“?”	is	used	between	the	antecedents	as	a	common	variable.	It	is	also	
provided	to	the	consequent,	if	required.	
	

Figure	1:	C#	Sample	Program	

Figure	2:	Process	Workflow

Figure	3:	Rule	definition	template

Practice	Task:	Ch	8	–	Rule	Based	System	 		 Christopher	W.	Blake	
Intellectual	Computing	 	 April	3,	2017	

Page	4	of	5	

The	consequents	are	a	list	of	actions	to	be	performed	on	the	working	memory.	Items	may	be	
added	or	removed	from	memory.	The	wild	card	character	“?”	is	used	like	a	variable	to	use	a	
value	 from	the	antecedents.	Additionally,	 timers	may	be	used	 to	 trigger	 specified	 rules	by	
name	at	a	given	time.	
	
Representation	as	Artificial	Neural	Networks	
It	 is	 interesting	to	point	out	that	a	rule	based	system	(RBS)	is	essentially	similar	to	artificial	
neural	networks	(ANNs).	Both	are	essentially	a	system	of	if-then	logic	gates.	An	RBS	compares	
its	antecedents	to	a	memory	stream,	which	is	analogous	to	the	input	nodes	of	an	ANN.		
	
However,	the	biggest	different	would	be	in	where	and	how	the	knowledge	is	stored	within	the	
system.	An	ANN	must	be	trained	using	example	data,	while	an	RBS	uses	predefined	rules.	In	a	
sense,	an	ANN	could	be	used	to	generate	the	rules	that	would	normally	be	manually	placed	
into	a	RBS.	However,	this	is	in	practice	difficult	or	impossible	because	the	values	are	stored	as	
very	non-human-readable	values	in	a	potentially	large	network	of	node	weights.	

Results	
The	following	sensor	system	is	monitored	versus	time.	The	results	are	shown	below.	This	can	
be	compared	to	the	rules	(See	appendix	1),	and	it	correctly	following	all	situations,	simulating	
the	initialization,	running,	failure,	and	restarting	of	two	sensors.	
Time: 1
Fired: init
sensor-active: none
sensor-working: sensor1
sensor-working: sensor2
mode: failure

Time: 2
Fired: make-working
sensor-working: sensor1
sensor-working: sensor2
sensor-active: sensor1
mode: normal

Time: 3,4,5,6,7,8,9,10

Time: 11
Fired: trigger1
sensor-working: sensor1
sensor-working: sensor2
sensor-active: sensor1
mode: normal
sensor-failed: sensor1

Time: 12
Fired: sensor-failed
sensor-working: sensor2
sensor-active: sensor1
mode: normal
sensor-failed: sensor1

Time: 13
Fired: check-active
sensor-working: sensor2

mode: normal
sensor-failed: sensor1
sensor-active: none

Time: 14
Fired: make-working
sensor-working: sensor2
mode: normal
sensor-failed: sensor1
sensor-active: sensor2

Time: 15,16,17,18,19,20

Time: 21
Fired: trigger2
sensor-working: sensor2
mode: normal
sensor-failed: sensor1
sensor-active: sensor2
sensor-failed: sensor2

Time: 22
Fired: sensor-failed
mode: normal
sensor-failed: sensor1
sensor-active: sensor2
sensor-failed: sensor2

Time: 23
Fired: check-active
mode: normal
sensor-failed: sensor1
sensor-failed: sensor2
sensor-active: none

Time: 24
Fired: failure
sensor-failed: sensor1
sensor-failed: sensor2
sensor-active: none
mode: failure

Time: 25,26,27,28,29,30

Time: 31
Fired: trigger3
sensor-failed: sensor2
sensor-active: none
mode: failure
sensor-working: sensor1

Time: 32
Fired: make-working
sensor-failed: sensor2
sensor-working: sensor1
sensor-active: sensor1
mode: normal

Time: 33,34,35,36,37,38,39,40

Time: 41
Fired: trigger4
sensor-working: sensor1
sensor-active: sensor1
mode: normal
sensor-working: sensor2

Conclusion	
A	generic	rule	based	system	was	created.	Using	this	rule	based	system,	and	a	specified	rule	
database	file,	automatic	logic	can	be	performed.	The	example	of	a	redundant	sensor	system	
is	utilized.	This	redundant	sensor	system	is	initialized,	has	a	failure	on	one	of	the	sensors,	
and	is	automatically	returned	to	working	state.	Given	a	rule	database	file,	complex	logic	can	
easily	be	utilized	to	solve	for	solutions	or	control	a	system.	

Practice	Task:	Ch	8	–	Rule	Based	System	 		 Christopher	W.	Blake	
Intellectual	Computing	 	 April	3,	2017	

Page	5	of	5	

Appendix	1	–	Example	Rule	Data	Base	file	
(defrule init
 (true null) ; antecedent
=>
 (add (sensor-active none)) ; consequents
 (add (sensor-working sensor1))
 (add (sensor-working sensor2))
 (add (mode failure))
 (enable (timer 1 10))
 (print ("default rule fired!"))
 (disable (self))
)

; Define active rule-set
(defrule sensor-failed
 (sensor-working ?)
 (sensor-failed ?)
=>
 (delete (sensor-working ?))
)
(defrule check-active
 (sensor-active ?)
 (sensor-failed ?)
=>
 (delete (sensor-active ?))
 (add (sensor-active none))
)
(defrule make-working
 (sensor-active none)
 (sensor-working ?)
=>
 (add (sensor-active ?))
 (delete (mode failure))
 (add (mode normal))
 (delete (sensor-active none))
)
(defrule failure
 (mode normal)
 (sensor-active none)
 (sensor-failed sensor1)
 (sensor-failed sensor2)
=>
 (add (mode failure))
 (delete (mode safe))
 (delete (mode normal))
)

; Use triggers to simulate timed events...
(defrule trigger1
 (timer-triggered 1)
=>
 (print ("Sensor 1 failure.\n"))
 (add (sensor-failed sensor1))
 (enable (timer 2 10))
 (delete (timer-triggered 1))
)
(defrule trigger2
 (timer-triggered 2)
=>
 (print ("Sensor 2 failure.\n"))
 (add (sensor-failed sensor2))
 (enable (timer 3 10))
 (delete (timer-triggered 2))
)
(defrule trigger3
 (timer-triggered 3)
=>
 (print ("Sensor 1 is now working.\n"))
 (delete (sensor-failed sensor1))
 (add (sensor-working sensor1))
 (enable (timer 4 10))
 (delete (timer-triggered 3))
)
(defrule trigger4
 (timer-triggered 4)
=>
 (print ("Sensor 2 is now working.\n"))
 (delete (sensor-failed sensor2))
 (add (sensor-working sensor2))
 ;(enable (timer 1 10))
 (quit (self))
 (delete (timer-triggered 4))
)

	

